Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

\left(x+10\right)^{2}=25
Kerro x+10 ja x+10, niin saadaan \left(x+10\right)^{2}.
x^{2}+20x+100=25
Käytä binomilausetta \left(a+b\right)^{2}=a^{2}+2ab+b^{2} yhtälön \left(x+10\right)^{2} laajentamiseen.
x^{2}+20x+100-25=0
Vähennä 25 molemmilta puolilta.
x^{2}+20x+75=0
Vähennä 25 luvusta 100 saadaksesi tuloksen 75.
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 20 ja c luvulla 75 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 75}}{2}
Korota 20 neliöön.
x=\frac{-20±\sqrt{400-300}}{2}
Kerro -4 ja 75.
x=\frac{-20±\sqrt{100}}{2}
Lisää 400 lukuun -300.
x=\frac{-20±10}{2}
Ota luvun 100 neliöjuuri.
x=-\frac{10}{2}
Ratkaise nyt yhtälö x=\frac{-20±10}{2}, kun ± on plusmerkkinen. Lisää -20 lukuun 10.
x=-5
Jaa -10 luvulla 2.
x=-\frac{30}{2}
Ratkaise nyt yhtälö x=\frac{-20±10}{2}, kun ± on miinusmerkkinen. Vähennä 10 luvusta -20.
x=-15
Jaa -30 luvulla 2.
x=-5 x=-15
Yhtälö on nyt ratkaistu.
\left(x+10\right)^{2}=25
Kerro x+10 ja x+10, niin saadaan \left(x+10\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+10=5 x+10=-5
Sievennä.
x=-5 x=-15
Vähennä 10 yhtälön molemmilta puolilta.