( m ^ { 5 } + 3 y ) d x - n d y = 0
Ratkaise muuttujan d suhteen
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(n=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=0\right)\text{ or }\left(m=\frac{\sqrt[5]{y\left(n-3x\right)}}{\sqrt[5]{x}}\text{ and }x\neq 0\right)\end{matrix}\right,
Ratkaise muuttujan m suhteen
\left\{\begin{matrix}m=\sqrt[5]{\frac{y\left(n-3x\right)}{x}}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&d=0\text{ or }\left(n=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=0\right)\end{matrix}\right,
Kuvaaja
Tietokilpailu
Linear Equation
5 ongelmia, jotka ovat samankaltaisia kuin:
( m ^ { 5 } + 3 y ) d x - n d y = 0
Jakaa
Kopioitu leikepöydälle
\left(m^{5}d+3yd\right)x-ndy=0
Laske lukujen m^{5}+3y ja d tulo käyttämällä osittelulakia.
m^{5}dx+3ydx-ndy=0
Laske lukujen m^{5}d+3yd ja x tulo käyttämällä osittelulakia.
3dxy+dxm^{5}-dny=0
Järjestä termit uudelleen.
\left(3xy+xm^{5}-ny\right)d=0
Yhdistä kaikki termit, jotka sisältävät d:n.
d=0
Jaa 0 luvulla 3xy+xm^{5}-ny.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}