( 3 x ^ { 2 } y + e ^ { y } ) d x + ( x ^ { 3 } + x e ^ { y } - 2 y ) d y = 0
Ratkaise muuttujan d suhteen
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&xye^{y}+xe^{y}-2y^{2}+4yx^{3}=0\end{matrix}\right,
Jakaa
Kopioitu leikepöydälle
\left(3x^{2}yd+e^{y}d\right)x+\left(x^{3}+xe^{y}-2y\right)dy=0
Laske lukujen 3x^{2}y+e^{y} ja d tulo käyttämällä osittelulakia.
3ydx^{3}+e^{y}dx+\left(x^{3}+xe^{y}-2y\right)dy=0
Laske lukujen 3x^{2}yd+e^{y}d ja x tulo käyttämällä osittelulakia.
3ydx^{3}+e^{y}dx+\left(x^{3}d+xe^{y}d-2yd\right)y=0
Laske lukujen x^{3}+xe^{y}-2y ja d tulo käyttämällä osittelulakia.
3ydx^{3}+e^{y}dx+x^{3}dy+xe^{y}dy-2dy^{2}=0
Laske lukujen x^{3}d+xe^{y}d-2yd ja y tulo käyttämällä osittelulakia.
4ydx^{3}+e^{y}dx+xe^{y}dy-2dy^{2}=0
Selvitä 4ydx^{3} yhdistämällä 3ydx^{3} ja x^{3}dy.
\left(4yx^{3}+e^{y}x+xe^{y}y-2y^{2}\right)d=0
Yhdistä kaikki termit, jotka sisältävät d:n.
\left(xye^{y}+xe^{y}-2y^{2}+4yx^{3}\right)d=0
Yhtälö on perusmuodossa.
d=0
Jaa 0 luvulla 4x^{3}y+e^{y}x+xe^{y}y-2y^{2}.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}