Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

\left(2x\right)^{2}-9=\left(4x-1\right)\left(x+1\right)
Tarkastele lauseketta \left(2x+3\right)\left(2x-3\right). Kertolasku voidaan muuntaa neliöiden erotukseksi seuraavalla säännöllä: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Korota 3 neliöön.
2^{2}x^{2}-9=\left(4x-1\right)\left(x+1\right)
Lavenna \left(2x\right)^{2}.
4x^{2}-9=\left(4x-1\right)\left(x+1\right)
Laske 2 potenssiin 2, jolloin ratkaisuksi tulee 4.
4x^{2}-9=4x^{2}+3x-1
Laske lukujen 4x-1 ja x+1 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
4x^{2}-9-4x^{2}=3x-1
Vähennä 4x^{2} molemmilta puolilta.
-9=3x-1
Selvitä 0 yhdistämällä 4x^{2} ja -4x^{2}.
3x-1=-9
Vaihda puolia niin, että kaikki muuttujat ovat vasemmalla puolella.
3x=-9+1
Lisää 1 molemmille puolille.
3x=-8
Selvitä -8 laskemalla yhteen -9 ja 1.
x=\frac{-8}{3}
Jaa molemmat puolet luvulla 3.
x=-\frac{8}{3}
Murtolauseke \frac{-8}{3} voidaan kirjoittaa uudelleen muotoon -\frac{8}{3} siirtämällä negatiivinen etumerkki lausekkeen ulkopuolelle.