Laske
2a^{3}\left(32768a^{13}-54a^{4}+a-4\right)
Lavenna
65536a^{16}-108a^{7}+2a^{4}-8a^{3}
Jakaa
Kopioitu leikepöydälle
\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat kertoa samankantaiset potenssit, lisää niiden eksponentit yhteen. Lisää 5 ja 3 yhteen saadaksesi 8.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 8 ja 2 keskenään saadaksesi 16.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat kertoa samankantaiset potenssit, lisää niiden eksponentit yhteen. Lisää 2 ja 5 yhteen saadaksesi 7.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Lavenna \left(-2a\right)^{3}.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Laske -2 potenssiin 3, jolloin ratkaisuksi tulee -8.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Lavenna \left(-2a\right)^{16}.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Laske -2 potenssiin 16, jolloin ratkaisuksi tulee 65536.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Lavenna \left(-3a\right)^{2}.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Laske -3 potenssiin 2, jolloin ratkaisuksi tulee 9.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kerro 9 ja 2, niin saadaan 18.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat kertoa samankantaiset potenssit, lisää niiden eksponentit yhteen. Lisää 2 ja 7 yhteen saadaksesi 9.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Lavenna \left(2a\right)^{4}.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Laske 2 potenssiin 4, jolloin ratkaisuksi tulee 16.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kerro 18 ja 16, niin saadaan 288.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat kertoa samankantaiset potenssit, lisää niiden eksponentit yhteen. Lisää 9 ja 4 yhteen saadaksesi 13.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kerro 288 ja -3, niin saadaan -864.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
Lavenna \left(-2a^{2}\right)^{3}.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 2 ja 3 keskenään saadaksesi 6.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
Laske -2 potenssiin 3, jolloin ratkaisuksi tulee -8.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
Supista 8a^{6} sekä osoittajasta että nimittäjästä.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
Kaikki, mikä jaetaan luvulla -1, antaa vastakkaisen tuloksen.
\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat kertoa samankantaiset potenssit, lisää niiden eksponentit yhteen. Lisää 5 ja 3 yhteen saadaksesi 8.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 8 ja 2 keskenään saadaksesi 16.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat kertoa samankantaiset potenssit, lisää niiden eksponentit yhteen. Lisää 2 ja 5 yhteen saadaksesi 7.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Lavenna \left(-2a\right)^{3}.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Laske -2 potenssiin 3, jolloin ratkaisuksi tulee -8.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Lavenna \left(-2a\right)^{16}.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Laske -2 potenssiin 16, jolloin ratkaisuksi tulee 65536.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Lavenna \left(-3a\right)^{2}.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Laske -3 potenssiin 2, jolloin ratkaisuksi tulee 9.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kerro 9 ja 2, niin saadaan 18.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat kertoa samankantaiset potenssit, lisää niiden eksponentit yhteen. Lisää 2 ja 7 yhteen saadaksesi 9.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Lavenna \left(2a\right)^{4}.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Laske 2 potenssiin 4, jolloin ratkaisuksi tulee 16.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kerro 18 ja 16, niin saadaan 288.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Jos haluat kertoa samankantaiset potenssit, lisää niiden eksponentit yhteen. Lisää 9 ja 4 yhteen saadaksesi 13.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kerro 288 ja -3, niin saadaan -864.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
Lavenna \left(-2a^{2}\right)^{3}.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 2 ja 3 keskenään saadaksesi 6.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
Laske -2 potenssiin 3, jolloin ratkaisuksi tulee -8.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
Supista 8a^{6} sekä osoittajasta että nimittäjästä.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
Kaikki, mikä jaetaan luvulla -1, antaa vastakkaisen tuloksen.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}