Hyppää pääsisältöön
Laske
Tick mark Image
Derivoi muuttujan r suhteen
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{\left(64r^{7}\right)^{\frac{2}{3}}}
Kohota \frac{-r^{4}}{64r^{7}} potenssiin kohottamalla sekä osoittaja että nimittäjä potenssiin ja jakamalla sitten.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}\left(r^{7}\right)^{\frac{2}{3}}}
Lavenna \left(64r^{7}\right)^{\frac{2}{3}}.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}r^{\frac{14}{3}}}
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 7 ja \frac{2}{3} keskenään saadaksesi \frac{14}{3}.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
Laske 64 potenssiin \frac{2}{3}, jolloin ratkaisuksi tulee 16.
\frac{\left(-1\right)^{\frac{2}{3}}\left(r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
Lavenna \left(-r^{4}\right)^{\frac{2}{3}}.
\frac{\left(-1\right)^{\frac{2}{3}}r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 4 ja \frac{2}{3} keskenään saadaksesi \frac{8}{3}.
\frac{1r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
Laske -1 potenssiin \frac{2}{3}, jolloin ratkaisuksi tulee 1.
\frac{1}{16r^{2}}
Supista r^{\frac{8}{3}} sekä osoittajasta että nimittäjästä.
\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{-r^{4}}{64r^{7}})
Jos F on kahden derivoituvan funktion, f\left(u\right) ja u=g\left(x\right), yhdistelmä, eli jos F\left(x\right)=f\left(g\left(x\right)\right), niin F:n derivaatta on f:n derivaatta u:n suhteen kertaa g:n derivaatta x:n suhteen, eli \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\frac{\mathrm{d}}{\mathrm{d}r}(-r^{4})-\left(-r^{4}\frac{\mathrm{d}}{\mathrm{d}r}(64r^{7})\right)\right)}{\left(64r^{7}\right)^{2}}
Kun tarkastellaan kahta derivoituvaa funktiota, funktioiden osamäärän derivaatta on nimittäjä kertaa osoittajan derivaatta miinus osoittaja kertaa nimittäjän derivaatta ja tämä kaikki jaettuna nimittäjän neliöllä.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\times 4\left(-1\right)r^{4-1}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
Polynomin derivaatta on sen termien derivaattojen summa. Vakiotermin derivaatta on 0. Lausekkeen ax^{n} derivaatta on nax^{n-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{7}r^{3}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
Kerro 64r^{7} ja 4\left(-1\right)r^{4-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{4}r^{6}\right)\right)}{\left(64r^{7}\right)^{2}}
Kerro -r^{4} ja 7\times 64r^{7-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{10}\right)\right)}{\left(64r^{7}\right)^{2}}
Sievennä.