Ratkaise muuttujan z suhteen
z=\sqrt[4]{3}e^{\frac{-\arctan(\sqrt{2})i+2\pi i}{2}}\approx -1,168770894+0,605000334i
z=\sqrt[4]{3}e^{-\frac{\arctan(\sqrt{2})i}{2}}\approx 1,168770894-0,605000334i
z=\sqrt[4]{3}e^{\frac{\arctan(\sqrt{2})i+2\pi i}{2}}\approx -1,168770894-0,605000334i
z=\sqrt[4]{3}e^{\frac{\arctan(\sqrt{2})i}{2}}\approx 1,168770894+0,605000334i
Tietokilpailu
Complex Number
{ z }^{ 4 } -2 { z }^{ 2 } +3=0
Jakaa
Kopioitu leikepöydälle
t^{2}-2t+3=0
Korvaa z^{2} arvolla t.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 3}}{2}
Kaikki kaavan ax^{2}+bx+c=0 yhtälöt voidaan ratkaista käyttämällä toisen asteen yhtälön kaavaa: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sijoita kaavassa muuttujan 1 tilalle a, muuttujan -2 tilalle b ja muuttujan 3 tilalle c.
t=\frac{2±\sqrt{-8}}{2}
Suorita laskutoimitukset.
t=1+\sqrt{2}i t=-\sqrt{2}i+1
Ratkaise yhtälö t=\frac{2±\sqrt{-8}}{2} kun ± on plus ja ± on miinus.
z=\sqrt[4]{3}e^{\frac{\arctan(\sqrt{2})i+2\pi i}{2}} z=\sqrt[4]{3}e^{\frac{\arctan(\sqrt{2})i}{2}} z=\sqrt[4]{3}e^{-\frac{\arctan(\sqrt{2})i}{2}} z=\sqrt[4]{3}e^{\frac{-\arctan(\sqrt{2})i+2\pi i}{2}}
Koska z=t^{2}, ratkaisut on saatu arvioidaan z=±\sqrt{t} kullekin t.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}