Jaa tekijöihin
\left(x-1\right)\left(x+3\right)^{2}
Laske
\left(x-1\right)\left(x+3\right)^{2}
Kuvaaja
Jakaa
Kopioitu leikepöydälle
\left(x+3\right)\left(x^{2}+2x-3\right)
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin -9 ja q jakaa alku kertoimen 1. Yksi pääkohde on -3. Jaa polynomin jakamalla se x+3.
a+b=2 ab=1\left(-3\right)=-3
Tarkastele lauseketta x^{2}+2x-3. Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa x^{2}+ax+bx-3. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=-1 b=3
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x^{2}-x\right)+\left(3x-3\right)
Kirjoita \left(x^{2}-x\right)+\left(3x-3\right) uudelleen muodossa x^{2}+2x-3.
x\left(x-1\right)+3\left(x-1\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 3.
\left(x-1\right)\left(x+3\right)
Jaa yleinen termi x-1 käyttämällä osittelu lain mukaisesti-ominaisuutta.
\left(x-1\right)\left(x+3\right)^{2}
Kirjoita koko tekijöihin jaettu lauseke uudelleen.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}