Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-7 ab=12
Jos haluat ratkaista kaavan, kerroin x^{2}-7x+12 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-12 -2,-6 -3,-4
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 12.
-1-12=-13 -2-6=-8 -3-4=-7
Laske kunkin parin summa.
a=-4 b=-3
Ratkaisu on pari, joka antaa summa -7.
\left(x-4\right)\left(x-3\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=4 x=3
Voit etsiä kaava ratkaisuja, ratkaista x-4=0 ja x-3=0.
a+b=-7 ab=1\times 12=12
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+12. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-12 -2,-6 -3,-4
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 12.
-1-12=-13 -2-6=-8 -3-4=-7
Laske kunkin parin summa.
a=-4 b=-3
Ratkaisu on pari, joka antaa summa -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Kirjoita \left(x^{2}-4x\right)+\left(-3x+12\right) uudelleen muodossa x^{2}-7x+12.
x\left(x-4\right)-3\left(x-4\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -3.
\left(x-4\right)\left(x-3\right)
Jaa yleinen termi x-4 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=4 x=3
Voit etsiä kaava ratkaisuja, ratkaista x-4=0 ja x-3=0.
x^{2}-7x+12=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -7 ja c luvulla 12 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
Korota -7 neliöön.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
Kerro -4 ja 12.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
Lisää 49 lukuun -48.
x=\frac{-\left(-7\right)±1}{2}
Ota luvun 1 neliöjuuri.
x=\frac{7±1}{2}
Luvun -7 vastaluku on 7.
x=\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{7±1}{2}, kun ± on plusmerkkinen. Lisää 7 lukuun 1.
x=4
Jaa 8 luvulla 2.
x=\frac{6}{2}
Ratkaise nyt yhtälö x=\frac{7±1}{2}, kun ± on miinusmerkkinen. Vähennä 1 luvusta 7.
x=3
Jaa 6 luvulla 2.
x=4 x=3
Yhtälö on nyt ratkaistu.
x^{2}-7x+12=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}-7x+12-12=-12
Vähennä 12 yhtälön molemmilta puolilta.
x^{2}-7x=-12
Kun luku 12 vähennetään itsestään, tulokseksi jää 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
Jaa -7 (x-termin kerroin) 2:lla, jolloin saadaan -\frac{7}{2}. Lisää sitten -\frac{7}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
Korota -\frac{7}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
Lisää -12 lukuun \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
Jaa x^{2}-7x+\frac{49}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
Sievennä.
x=4 x=3
Lisää \frac{7}{2} yhtälön kummallekin puolelle.