Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-11 ab=1\times 24=24
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa x^{2}+ax+bx+24. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-24 -2,-12 -3,-8 -4,-6
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Laske kunkin parin summa.
a=-8 b=-3
Ratkaisu on pari, joka antaa summa -11.
\left(x^{2}-8x\right)+\left(-3x+24\right)
Kirjoita \left(x^{2}-8x\right)+\left(-3x+24\right) uudelleen muodossa x^{2}-11x+24.
x\left(x-8\right)-3\left(x-8\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -3.
\left(x-8\right)\left(x-3\right)
Jaa yleinen termi x-8 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x^{2}-11x+24=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
Korota -11 neliöön.
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
Kerro -4 ja 24.
x=\frac{-\left(-11\right)±\sqrt{25}}{2}
Lisää 121 lukuun -96.
x=\frac{-\left(-11\right)±5}{2}
Ota luvun 25 neliöjuuri.
x=\frac{11±5}{2}
Luvun -11 vastaluku on 11.
x=\frac{16}{2}
Ratkaise nyt yhtälö x=\frac{11±5}{2}, kun ± on plusmerkkinen. Lisää 11 lukuun 5.
x=8
Jaa 16 luvulla 2.
x=\frac{6}{2}
Ratkaise nyt yhtälö x=\frac{11±5}{2}, kun ± on miinusmerkkinen. Vähennä 5 luvusta 11.
x=3
Jaa 6 luvulla 2.
x^{2}-11x+24=\left(x-8\right)\left(x-3\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 8 kohteella x_{1} ja 3 kohteella x_{2}.