Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=5 ab=-6
Jos haluat ratkaista kaavan, kerroin x^{2}+5x-6 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,6 -2,3
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Luettele kaikki tällaisia esimerkiksi tuote -6.
-1+6=5 -2+3=1
Laske kunkin parin summa.
a=-1 b=6
Ratkaisu on pari, joka antaa summa 5.
\left(x-1\right)\left(x+6\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=1 x=-6
Voit etsiä kaava ratkaisuja, ratkaista x-1=0 ja x+6=0.
a+b=5 ab=1\left(-6\right)=-6
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx-6. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,6 -2,3
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Luettele kaikki tällaisia esimerkiksi tuote -6.
-1+6=5 -2+3=1
Laske kunkin parin summa.
a=-1 b=6
Ratkaisu on pari, joka antaa summa 5.
\left(x^{2}-x\right)+\left(6x-6\right)
Kirjoita \left(x^{2}-x\right)+\left(6x-6\right) uudelleen muodossa x^{2}+5x-6.
x\left(x-1\right)+6\left(x-1\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 6.
\left(x-1\right)\left(x+6\right)
Jaa yleinen termi x-1 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=1 x=-6
Voit etsiä kaava ratkaisuja, ratkaista x-1=0 ja x+6=0.
x^{2}+5x-6=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 5 ja c luvulla -6 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
Korota 5 neliöön.
x=\frac{-5±\sqrt{25+24}}{2}
Kerro -4 ja -6.
x=\frac{-5±\sqrt{49}}{2}
Lisää 25 lukuun 24.
x=\frac{-5±7}{2}
Ota luvun 49 neliöjuuri.
x=\frac{2}{2}
Ratkaise nyt yhtälö x=\frac{-5±7}{2}, kun ± on plusmerkkinen. Lisää -5 lukuun 7.
x=1
Jaa 2 luvulla 2.
x=-\frac{12}{2}
Ratkaise nyt yhtälö x=\frac{-5±7}{2}, kun ± on miinusmerkkinen. Vähennä 7 luvusta -5.
x=-6
Jaa -12 luvulla 2.
x=1 x=-6
Yhtälö on nyt ratkaistu.
x^{2}+5x-6=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}+5x-6-\left(-6\right)=-\left(-6\right)
Lisää 6 yhtälön kummallekin puolelle.
x^{2}+5x=-\left(-6\right)
Kun luku -6 vähennetään itsestään, tulokseksi jää 0.
x^{2}+5x=6
Vähennä -6 luvusta 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=6+\left(\frac{5}{2}\right)^{2}
Jaa 5 (x-termin kerroin) 2:lla, jolloin saadaan \frac{5}{2}. Lisää sitten \frac{5}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+5x+\frac{25}{4}=6+\frac{25}{4}
Korota \frac{5}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}+5x+\frac{25}{4}=\frac{49}{4}
Lisää 6 lukuun \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{49}{4}
Jaa x^{2}+5x+\frac{25}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{5}{2}=\frac{7}{2} x+\frac{5}{2}=-\frac{7}{2}
Sievennä.
x=1 x=-6
Vähennä \frac{5}{2} yhtälön molemmilta puolilta.