Hyppää pääsisältöön
Derivoi muuttujan x suhteen
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

\frac{3}{2}\left(-x^{1}+1\right)^{\frac{3}{2}-1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+1)
Jos F on kahden derivoituvan funktion, f\left(u\right) ja u=g\left(x\right), yhdistelmä, eli jos F\left(x\right)=f\left(g\left(x\right)\right), niin F:n derivaatta on f:n derivaatta u:n suhteen kertaa g:n derivaatta x:n suhteen, eli \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{3}{2}\sqrt{-x^{1}+1}\left(-1\right)x^{1-1}
Polynomin derivaatta on sen termien derivaattojen summa. Vakiotermin derivaatta on 0. Lausekkeen ax^{n} derivaatta on nax^{n-1}.
-\frac{3}{2}x^{0}\sqrt{-x^{1}+1}
Sievennä.
-\frac{3}{2}x^{0}\sqrt{-x+1}
Mille tahansa termille t pätee t^{1}=t.
-\frac{3}{2}\sqrt{-x+1}
Luvulle t, joka ei ole 0, pätee t^{0}=1.