Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

\left(\sqrt{x}\right)^{2}=\left(x-1\right)^{2}
Korota yhtälön molemmat puolet neliöön.
x=\left(x-1\right)^{2}
Laske \sqrt{x} potenssiin 2, jolloin ratkaisuksi tulee x.
x=x^{2}-2x+1
Käytä binomilausetta \left(a-b\right)^{2}=a^{2}-2ab+b^{2} yhtälön \left(x-1\right)^{2} laajentamiseen.
x-x^{2}=-2x+1
Vähennä x^{2} molemmilta puolilta.
x-x^{2}+2x=1
Lisää 2x molemmille puolille.
3x-x^{2}=1
Selvitä 3x yhdistämällä x ja 2x.
3x-x^{2}-1=0
Vähennä 1 molemmilta puolilta.
-x^{2}+3x-1=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla -1, b luvulla 3 ja c luvulla -1 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Korota 3 neliöön.
x=\frac{-3±\sqrt{9+4\left(-1\right)}}{2\left(-1\right)}
Kerro -4 ja -1.
x=\frac{-3±\sqrt{9-4}}{2\left(-1\right)}
Kerro 4 ja -1.
x=\frac{-3±\sqrt{5}}{2\left(-1\right)}
Lisää 9 lukuun -4.
x=\frac{-3±\sqrt{5}}{-2}
Kerro 2 ja -1.
x=\frac{\sqrt{5}-3}{-2}
Ratkaise nyt yhtälö x=\frac{-3±\sqrt{5}}{-2}, kun ± on plusmerkkinen. Lisää -3 lukuun \sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Jaa -3+\sqrt{5} luvulla -2.
x=\frac{-\sqrt{5}-3}{-2}
Ratkaise nyt yhtälö x=\frac{-3±\sqrt{5}}{-2}, kun ± on miinusmerkkinen. Vähennä \sqrt{5} luvusta -3.
x=\frac{\sqrt{5}+3}{2}
Jaa -3-\sqrt{5} luvulla -2.
x=\frac{3-\sqrt{5}}{2} x=\frac{\sqrt{5}+3}{2}
Yhtälö on nyt ratkaistu.
\sqrt{\frac{3-\sqrt{5}}{2}}=\frac{3-\sqrt{5}}{2}-1
Korvaa x arvolla \frac{3-\sqrt{5}}{2} yhtälössä \sqrt{x}=x-1.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}
Sievennä. Arvo x=\frac{3-\sqrt{5}}{2} ei täytä yhtälöä, koska vasemmalla ja oikealla puolella on vastakkaisen merkit.
\sqrt{\frac{\sqrt{5}+3}{2}}=\frac{\sqrt{5}+3}{2}-1
Korvaa x arvolla \frac{\sqrt{5}+3}{2} yhtälössä \sqrt{x}=x-1.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}
Sievennä. Arvo x=\frac{\sqrt{5}+3}{2} täyttää yhtälön.
x=\frac{\sqrt{5}+3}{2}
Yhtälöön\sqrt{x}=x-1 on yksilöllinen ratkaisu.