Ratkaise muuttujan x suhteen (complex solution)
\left\{\begin{matrix}x=-i\ln(-i\sqrt{2y^{2}\ln(y)+\ln(y)^{2}-2\ln(y)+y^{4}-2y^{2}}+i\ln(y)+iy^{2}-i)+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&-i\sqrt{2y^{2}\ln(y)+\ln(y)^{2}-2\ln(y)+y^{4}-2y^{2}}+i\ln(y)+iy^{2}\neq i\text{ and }y\neq 0\text{ and }-i\sqrt{2y^{2}\ln(y)+\ln(y)^{2}-2\ln(y)+y^{4}-2y^{2}}+i\ln(y)+iy^{2}\neq i\\x=-i\ln(i\sqrt{2y^{2}\ln(y)+\ln(y)^{2}-2\ln(y)+y^{4}-2y^{2}}+i\ln(y)+iy^{2}-i)+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&i\sqrt{2y^{2}\ln(y)+\ln(y)^{2}-2\ln(y)+y^{4}-2y^{2}}+i\ln(y)+iy^{2}\neq i\text{ and }y\neq 0\text{ and }i\sqrt{2y^{2}\ln(y)+\ln(y)^{2}-2\ln(y)+y^{4}-2y^{2}}+i\ln(y)+iy^{2}\neq i\end{matrix}\right,
Ratkaise muuttujan x suhteen
x=\arcsin(-\ln(y)-y^{2}+1)+2\pi n_{1}+\pi \text{, }n_{1}\in \mathrm{Z}
x=-\arcsin(-\ln(y)-y^{2}+1)+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }y>0\text{ and }-\ln(y)-y^{2}\leq 0\text{ and }-\ln(y)-y^{2}\geq -2
Kuvaaja
Tietokilpailu
Trigonometry
5 ongelmia, jotka ovat samankaltaisia kuin:
\ln ( y ) + y ^ { 2 } = \sin ( x ) + 1
Jakaa
Kopioitu leikepöydälle
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}