Hyppää pääsisältöön
Laske
Tick mark Image
Jaa tekijöihin
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

det(\left(\begin{matrix}18&-1&-1\\10&3&-2\\-2&-2&3\end{matrix}\right))
Etsi matriisin determinantti käyttämällä diagonaalimenetelmää.
\left(\begin{matrix}18&-1&-1&18&-1\\10&3&-2&10&3\\-2&-2&3&-2&-2\end{matrix}\right)
Laajenna alkuperäistä matriisia toistamalla kaksi ensimmäistä saraketta neljäntenä ja viidentenä sarakkeena.
18\times 3\times 3-\left(-2\left(-2\right)\right)-10\left(-2\right)=178
Aloita vasemmasta yläkulmasta, kerro laskevia lävistäjiä pitkin ja laske tulot yhteen.
-2\times 3\left(-1\right)-2\left(-2\right)\times 18+3\times 10\left(-1\right)=48
Aloita vasemmasta alakulmasta, kerro nousevia lävistäjiä pitkin ja laske tulot yhteen.
178-48
Vähennä nousevan lävistäjän tulojen summa laskevan lävistäjän tulojen summasta.
130
Vähennä 48 luvusta 178.
det(\left(\begin{matrix}18&-1&-1\\10&3&-2\\-2&-2&3\end{matrix}\right))
Etsi matriisin determinantti käyttämällä alideterminanttilaajennusta (eli kofaktorilaajennusta).
18det(\left(\begin{matrix}3&-2\\-2&3\end{matrix}\right))-\left(-det(\left(\begin{matrix}10&-2\\-2&3\end{matrix}\right))\right)-det(\left(\begin{matrix}10&3\\-2&-2\end{matrix}\right))
Jos haluat laajentaa alideterminantilla, kerro ensimmäisen rivin jokainen alkio sen alideterminantilla (sen 2\times 2-matriisin determinantti, joka syntyy, kun poistetaan se rivi ja sarake, jossa alkio esiintyy). Kerro sitten alkion sijainnilla.
18\left(3\times 3-\left(-2\left(-2\right)\right)\right)-\left(-\left(10\times 3-\left(-2\left(-2\right)\right)\right)\right)-\left(10\left(-2\right)-\left(-2\times 3\right)\right)
2\times 2 matriisin \left(\begin{matrix}a&b\\c&d\end{matrix}\right) determinantti on ad-bc.
18\times 5-\left(-26\right)-\left(-14\right)
Sievennä.
130
Laske termit yhteen lopputuloksen saamiseksi.