Laske
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}+С
Derivoi muuttujan x suhteen
2x\left(x^{2}+1\right)^{3}
Tietokilpailu
Integration
5 ongelmia, jotka ovat samankaltaisia kuin:
\int{ 2x { \left( { x }^{ 2 } +1 \right) }^{ 3 } }d x
Jakaa
Kopioitu leikepöydälle
\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Käytä binomilausetta \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} yhtälön \left(x^{2}+1\right)^{3} laajentamiseen.
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 2 ja 3 keskenään saadaksesi 6.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 2 ja 2 keskenään saadaksesi 4.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
Laske lukujen 2x ja x^{6}+3x^{4}+3x^{2}+1 tulo käyttämällä osittelulakia.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Integroi summa termi kerrallaan.
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Ota vakio tekijäksi kussakin termissä.
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int x^{7}\mathrm{d}x \frac{x^{8}}{8}. Kerro 2 ja \frac{x^{8}}{8}.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int x^{5}\mathrm{d}x \frac{x^{6}}{6}. Kerro 6 ja \frac{x^{6}}{6}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Kerro 6 ja \frac{x^{4}}{4}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int x\mathrm{d}x \frac{x^{2}}{2}. Kerro 2 ja \frac{x^{2}}{2}.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
Jos F\left(x\right) on f\left(x\right) antiderivative, kaikkien f\left(x\right) antama antiderivatives F\left(x\right)+C. Lisää siihen, että integrointi C\in \mathrm{R} tulokseen.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}