Hyppää pääsisältöön
Laske
Tick mark Image
Derivoi muuttujan x suhteen
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

\int 7x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x+\int 4x^{5}\mathrm{d}x
Integroi summa termi kerrallaan.
7\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x+4\int x^{5}\mathrm{d}x
Ota vakio tekijäksi kussakin termissä.
\frac{7x^{3}}{3}-3\int x^{3}\mathrm{d}x+4\int x^{5}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Kerro 7 ja \frac{x^{3}}{3}.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+4\int x^{5}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Kerro -3 ja \frac{x^{4}}{4}.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+\frac{2x^{6}}{3}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int x^{5}\mathrm{d}x \frac{x^{6}}{6}. Kerro 4 ja \frac{x^{6}}{6}.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+\frac{2x^{6}}{3}+С
Jos F\left(x\right) on f\left(x\right) antiderivative, kaikkien f\left(x\right) antama antiderivatives F\left(x\right)+C. Lisää siihen, että integrointi C\in \mathrm{R} tulokseen.