Hyppää pääsisältöön
Laske
Tick mark Image
Derivoi muuttujan x suhteen
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

\int 2x^{5}\mathrm{d}x+\int \frac{3}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Integroi summa termi kerrallaan.
2\int x^{5}\mathrm{d}x+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Ota vakio tekijäksi kussakin termissä.
\frac{x^{6}}{3}+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int x^{5}\mathrm{d}x \frac{x^{6}}{6}. Kerro 2 ja \frac{x^{6}}{6}.
\frac{x^{6}}{3}+3\ln(|x|)+\int \frac{1}{x^{9}}\mathrm{d}x
Voit hankkia tuloksen \int \frac{1}{x}\mathrm{d}x=\ln(|x|) yleistä integraalit.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, korvaa \int \frac{1}{x^{9}}\mathrm{d}x -\frac{1}{8x^{8}}.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}+С
Jos F\left(x\right) on f\left(x\right) antiderivative, kaikkien f\left(x\right) antama antiderivatives F\left(x\right)+C. Lisää siihen, että integrointi C\in \mathrm{R} tulokseen.