Hyppää pääsisältöön
Laske
Tick mark Image
Derivoi muuttujan x suhteen
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0\pi ))
Kerro 0 ja 25, niin saadaan 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0))
Nolla kertaa mikä tahansa luku on nolla.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))
Nolla plus mikä tahansa luku on luku itse.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
Funktion f\left(x\right) derivaatta on raja-arvo \frac{f\left(x+h\right)-f\left(x\right)}{h}, kun h lähestyy arvoa 0, jos kyseinen raja-arvo on olemassa.
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
Käytä sinin summakaavaa.
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
Jaa tekijöihin \sin(x):n suhteen.
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Kirjoita raja-arvo uudelleen.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Käytä tietoa, että x on vakio, laskettaessa raja-arvoa, kun h lähestyy arvoa 0.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
Raja-arvo \lim_{x\to 0}\frac{\sin(x)}{x} on 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Jos haluat määrittää raja-arvon \lim_{h\to 0}\frac{\cos(h)-1}{h}, kerro ensin osoittaja ja nimittäjä luvulla \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Kerro \cos(h)+1 ja \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Käytä Pythagoraan identiteettiä.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Kirjoita raja-arvo uudelleen.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Raja-arvo \lim_{x\to 0}\frac{\sin(x)}{x} on 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Käytä tietoa, että \frac{\sin(h)}{\cos(h)+1} on jatkuva arvolla 0.
\cos(x)
Sijoita arvo 0 yhtälöön \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x).