Ratkaise muuttujan y suhteen
y=-\frac{3\sqrt{x}z}{2\left(-3z+\sqrt{x}\right)}
z\neq 0\text{ and }\left(z<0\text{ or }x\neq 9z^{2}\right)\text{ and }x>0
Ratkaise muuttujan x suhteen
x=36\times \left(\frac{yz}{2y+3z}\right)^{2}
\left(y>0\text{ and }y<-\frac{3z}{2}\right)\text{ or }\left(z>0\text{ and }y<-\frac{3z}{2}\right)\text{ or }\left(z>0\text{ and }y>0\right)
Tietokilpailu
Algebra
5 ongelmia, jotka ovat samankaltaisia kuin:
\frac{ 1 }{ \sqrt{ x } } = \frac{ 1 }{ 2y } + \frac{ 1 }{ 3z }
Jakaa
Kopioitu leikepöydälle
6yzx^{-\frac{1}{2}}=3z+2y
Muuttuja y ei voi olla yhtä suuri kuin 0, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla 6yz, joka on lukujen 2y,3z pienin yhteinen jaettava.
6yzx^{-\frac{1}{2}}-2y=3z
Vähennä 2y molemmilta puolilta.
\left(6zx^{-\frac{1}{2}}-2\right)y=3z
Yhdistä kaikki termit, jotka sisältävät y:n.
\left(\frac{6z}{\sqrt{x}}-2\right)y=3z
Yhtälö on perusmuodossa.
\frac{\left(\frac{6z}{\sqrt{x}}-2\right)y}{\frac{6z}{\sqrt{x}}-2}=\frac{3z}{\frac{6z}{\sqrt{x}}-2}
Jaa molemmat puolet luvulla 6zx^{-\frac{1}{2}}-2.
y=\frac{3z}{\frac{6z}{\sqrt{x}}-2}
Jakaminen luvulla 6zx^{-\frac{1}{2}}-2 kumoaa kertomisen luvulla 6zx^{-\frac{1}{2}}-2.
y=\frac{3\sqrt{x}z}{2\left(3z-\sqrt{x}\right)}
Jaa 3z luvulla 6zx^{-\frac{1}{2}}-2.
y=\frac{3\sqrt{x}z}{2\left(3z-\sqrt{x}\right)}\text{, }y\neq 0
Muuttuja y ei voi olla yhtä suuri kuin 0.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}