Hyppää pääsisältöön
Laske
Tick mark Image
Lavenna
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Jos haluat lisätä tai vähentää lausekkeita, lavenna ne niin, että niiden nimittäjät ovat samat. Kerro y-1 ja \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Koska arvoilla \frac{\left(y-1\right)\left(y+3\right)}{y+3} ja \frac{5}{y+3} on sama nimittäjä, laske niiden erotus vähentämällä niiden osoittajat toisistaan.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Suorita kertolaskut kohteessa \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Yhdistä samanmuotoiset termit yhtälössä y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Ilmaise 5\times \frac{-35}{y+3} säännöllisenä murtolukuna.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Jos haluat lisätä tai vähentää lausekkeita, lavenna ne niin, että niiden nimittäjät ovat samat. Kerro y ja \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Koska arvoilla \frac{y\left(y+3\right)}{y+3} ja \frac{5\left(-35\right)}{y+3} on sama nimittäjä, laske ne yhteen laskemalla niiden osoittajat yhteen.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Suorita kertolaskut kohteessa y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Jaa \frac{y^{2}+2y-8}{y+3} luvulla \frac{y^{2}+3y-175}{y+3} kertomalla \frac{y^{2}+2y-8}{y+3} luvun \frac{y^{2}+3y-175}{y+3} käänteisluvulla.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Supista y+3 sekä osoittajasta että nimittäjästä.
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Jos haluat lisätä tai vähentää lausekkeita, lavenna ne niin, että niiden nimittäjät ovat samat. Kerro y-1 ja \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Koska arvoilla \frac{\left(y-1\right)\left(y+3\right)}{y+3} ja \frac{5}{y+3} on sama nimittäjä, laske niiden erotus vähentämällä niiden osoittajat toisistaan.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Suorita kertolaskut kohteessa \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Yhdistä samanmuotoiset termit yhtälössä y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Ilmaise 5\times \frac{-35}{y+3} säännöllisenä murtolukuna.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Jos haluat lisätä tai vähentää lausekkeita, lavenna ne niin, että niiden nimittäjät ovat samat. Kerro y ja \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Koska arvoilla \frac{y\left(y+3\right)}{y+3} ja \frac{5\left(-35\right)}{y+3} on sama nimittäjä, laske ne yhteen laskemalla niiden osoittajat yhteen.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Suorita kertolaskut kohteessa y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Jaa \frac{y^{2}+2y-8}{y+3} luvulla \frac{y^{2}+3y-175}{y+3} kertomalla \frac{y^{2}+2y-8}{y+3} luvun \frac{y^{2}+3y-175}{y+3} käänteisluvulla.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Supista y+3 sekä osoittajasta että nimittäjästä.