Ratkaise muuttujan x suhteen
x=2
Kuvaaja
Jakaa
Kopioitu leikepöydälle
x-5+x-7=4\left(x+6\right)-4\left(x+4\right)-2\left(x+6\right)
Kerro yhtälön molemmat puolet luvulla 8, joka on lukujen 8,2,4 pienin yhteinen jaettava.
2x-5-7=4\left(x+6\right)-4\left(x+4\right)-2\left(x+6\right)
Selvitä 2x yhdistämällä x ja x.
2x-12=4\left(x+6\right)-4\left(x+4\right)-2\left(x+6\right)
Vähennä 7 luvusta -5 saadaksesi tuloksen -12.
2x-12=4x+24-4\left(x+4\right)-2\left(x+6\right)
Laske lukujen 4 ja x+6 tulo käyttämällä osittelulakia.
2x-12=4x+24-4x-16-2\left(x+6\right)
Laske lukujen -4 ja x+4 tulo käyttämällä osittelulakia.
2x-12=24-16-2\left(x+6\right)
Selvitä 0 yhdistämällä 4x ja -4x.
2x-12=8-2\left(x+6\right)
Vähennä 16 luvusta 24 saadaksesi tuloksen 8.
2x-12=8-2x-12
Laske lukujen -2 ja x+6 tulo käyttämällä osittelulakia.
2x-12=-4-2x
Vähennä 12 luvusta 8 saadaksesi tuloksen -4.
2x-12+2x=-4
Lisää 2x molemmille puolille.
4x-12=-4
Selvitä 4x yhdistämällä 2x ja 2x.
4x=-4+12
Lisää 12 molemmille puolille.
4x=8
Selvitä 8 laskemalla yhteen -4 ja 12.
x=\frac{8}{4}
Jaa molemmat puolet luvulla 4.
x=2
Jaa 8 luvulla 4, jolloin ratkaisuksi tulee 2.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}