Hyppää pääsisältöön
Laske
Tick mark Image
Derivoi muuttujan a suhteen
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

\frac{a}{a\left(a-1\right)}
Jaa tekijöihin lausekkeet, joita ei ole jo jaettu tekijöihin.
\frac{1}{a-1}
Supista a sekä osoittajasta että nimittäjästä.
\frac{\left(a^{2}-a^{1}\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{1})-a^{1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-a^{1})}{\left(a^{2}-a^{1}\right)^{2}}
Kun tarkastellaan kahta derivoituvaa funktiota, funktioiden osamäärän derivaatta on nimittäjä kertaa osoittajan derivaatta miinus osoittaja kertaa nimittäjän derivaatta ja tämä kaikki jaettuna nimittäjän neliöllä.
\frac{\left(a^{2}-a^{1}\right)a^{1-1}-a^{1}\left(2a^{2-1}-a^{1-1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Polynomin derivaatta on sen termien derivaattojen summa. Vakiotermin derivaatta on 0. Lausekkeen ax^{n} derivaatta on nax^{n-1}.
\frac{\left(a^{2}-a^{1}\right)a^{0}-a^{1}\left(2a^{1}-a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Sievennä.
\frac{a^{2}a^{0}-a^{1}a^{0}-a^{1}\left(2a^{1}-a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Kerro a^{2}-a^{1} ja a^{0}.
\frac{a^{2}a^{0}-a^{1}a^{0}-\left(a^{1}\times 2a^{1}+a^{1}\left(-1\right)a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Kerro a^{1} ja 2a^{1}-a^{0}.
\frac{a^{2}-a^{1}-\left(2a^{1+1}-a^{1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Jos haluat kertoa samankantaiset potenssit, laske niiden eksponentit yhteen.
\frac{a^{2}-a^{1}-\left(2a^{2}-a^{1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Sievennä.
\frac{-a^{2}}{\left(a^{2}-a^{1}\right)^{2}}
Yhdistä samanmuotoiset termit.
\frac{-a^{2}}{\left(a^{2}-a\right)^{2}}
Mille tahansa termille t pätee t^{1}=t.