Laske
\frac{28\sqrt{6}}{43}\approx 1,595016577
Jakaa
Kopioitu leikepöydälle
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{\left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right)}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Muunna rationaaliluvuksi nimittäjä \frac{7+\sqrt{6}}{7-\sqrt{6}} kertomalla osoittaja ja nimittäjä 7+\sqrt{6}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Tarkastele lauseketta \left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right). Kertolasku voidaan muuntaa neliöiden erotukseksi seuraavalla säännöllä: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{49-6}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Korota 7 neliöön. Korota \sqrt{6} neliöön.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Vähennä 6 luvusta 49 saadaksesi tuloksen 43.
\frac{\left(7+\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Kerro 7+\sqrt{6} ja 7+\sqrt{6}, niin saadaan \left(7+\sqrt{6}\right)^{2}.
\frac{49+14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Käytä binomilausetta \left(a+b\right)^{2}=a^{2}+2ab+b^{2} yhtälön \left(7+\sqrt{6}\right)^{2} laajentamiseen.
\frac{49+14\sqrt{6}+6}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Luvun \sqrt{6} neliö on 6.
\frac{55+14\sqrt{6}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Selvitä 55 laskemalla yhteen 49 ja 6.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
Muunna rationaaliluvuksi nimittäjä \frac{7-\sqrt{6}}{7+\sqrt{6}} kertomalla osoittaja ja nimittäjä 7-\sqrt{6}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
Tarkastele lauseketta \left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right). Kertolasku voidaan muuntaa neliöiden erotukseksi seuraavalla säännöllä: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{49-6}
Korota 7 neliöön. Korota \sqrt{6} neliöön.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{43}
Vähennä 6 luvusta 49 saadaksesi tuloksen 43.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)^{2}}{43}
Kerro 7-\sqrt{6} ja 7-\sqrt{6}, niin saadaan \left(7-\sqrt{6}\right)^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}
Käytä binomilausetta \left(a-b\right)^{2}=a^{2}-2ab+b^{2} yhtälön \left(7-\sqrt{6}\right)^{2} laajentamiseen.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+6}{43}
Luvun \sqrt{6} neliö on 6.
\frac{55+14\sqrt{6}}{43}-\frac{55-14\sqrt{6}}{43}
Selvitä 55 laskemalla yhteen 49 ja 6.
\frac{55+14\sqrt{6}-\left(55-14\sqrt{6}\right)}{43}
Koska arvoilla \frac{55+14\sqrt{6}}{43} ja \frac{55-14\sqrt{6}}{43} on sama nimittäjä, laske niiden erotus vähentämällä niiden osoittajat toisistaan.
\frac{55+14\sqrt{6}-55+14\sqrt{6}}{43}
Suorita kertolaskut kohteessa 55+14\sqrt{6}-\left(55-14\sqrt{6}\right).
\frac{28\sqrt{6}}{43}
Suorita yhtälön 55+14\sqrt{6}-55+14\sqrt{6} laskutoimitukset.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}