Ratkaise muuttujan y suhteen
y=4
Kuvaaja
Jakaa
Kopioitu leikepöydälle
y\times \frac{5}{\frac{5}{3}}+8=5y
Muuttuja y ei voi olla yhtä suuri kuin 0, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla y.
y\times 5\times \frac{3}{5}+8=5y
Jaa 5 luvulla \frac{5}{3} kertomalla 5 luvun \frac{5}{3} käänteisluvulla.
y\times 3+8=5y
Supista 5 ja 5.
y\times 3+8-5y=0
Vähennä 5y molemmilta puolilta.
-2y+8=0
Selvitä -2y yhdistämällä y\times 3 ja -5y.
-2y=-8
Vähennä 8 molemmilta puolilta. Nolla miinus mikä tahansa luku on luvun vastaluku.
y=\frac{-8}{-2}
Jaa molemmat puolet luvulla -2.
y=4
Jaa -8 luvulla -2, jolloin ratkaisuksi tulee 4.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}