Ratkaise muuttujan x suhteen
x=-1
x=3
Kuvaaja
Tietokilpailu
Polynomial
5 ongelmia, jotka ovat samankaltaisia kuin:
\frac { 3 } { x } + \frac { 5 } { x + 2 } = 2
Jakaa
Kopioitu leikepöydälle
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Muuttuja x ei voi olla yhtä suuri kuin mikään arvoista -2,0, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x\left(x+2\right), joka on lukujen x,x+2 pienin yhteinen jaettava.
3x+6+x\times 5=2x\left(x+2\right)
Laske lukujen x+2 ja 3 tulo käyttämällä osittelulakia.
8x+6=2x\left(x+2\right)
Selvitä 8x yhdistämällä 3x ja x\times 5.
8x+6=2x^{2}+4x
Laske lukujen 2x ja x+2 tulo käyttämällä osittelulakia.
8x+6-2x^{2}=4x
Vähennä 2x^{2} molemmilta puolilta.
8x+6-2x^{2}-4x=0
Vähennä 4x molemmilta puolilta.
4x+6-2x^{2}=0
Selvitä 4x yhdistämällä 8x ja -4x.
2x+3-x^{2}=0
Jaa molemmat puolet luvulla 2.
-x^{2}+2x+3=0
Järjestä polynomi perusmuotoon. Aseta termit suurimmasta potenssista pienimpään.
a+b=2 ab=-3=-3
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon -x^{2}+ax+bx+3. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=3 b=-1
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Ainoa tällainen pari on järjestelmäratkaisu.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Kirjoita \left(-x^{2}+3x\right)+\left(-x+3\right) uudelleen muodossa -x^{2}+2x+3.
-x\left(x-3\right)-\left(x-3\right)
Jaa -x toisessa ryhmässä ensimmäisessä ja -1.
\left(x-3\right)\left(-x-1\right)
Jaa yleinen termi x-3 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=3 x=-1
Voit etsiä kaava ratkaisuja, ratkaista x-3=0 ja -x-1=0.
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Muuttuja x ei voi olla yhtä suuri kuin mikään arvoista -2,0, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x\left(x+2\right), joka on lukujen x,x+2 pienin yhteinen jaettava.
3x+6+x\times 5=2x\left(x+2\right)
Laske lukujen x+2 ja 3 tulo käyttämällä osittelulakia.
8x+6=2x\left(x+2\right)
Selvitä 8x yhdistämällä 3x ja x\times 5.
8x+6=2x^{2}+4x
Laske lukujen 2x ja x+2 tulo käyttämällä osittelulakia.
8x+6-2x^{2}=4x
Vähennä 2x^{2} molemmilta puolilta.
8x+6-2x^{2}-4x=0
Vähennä 4x molemmilta puolilta.
4x+6-2x^{2}=0
Selvitä 4x yhdistämällä 8x ja -4x.
-2x^{2}+4x+6=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla -2, b luvulla 4 ja c luvulla 6 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 6}}{2\left(-2\right)}
Korota 4 neliöön.
x=\frac{-4±\sqrt{16+8\times 6}}{2\left(-2\right)}
Kerro -4 ja -2.
x=\frac{-4±\sqrt{16+48}}{2\left(-2\right)}
Kerro 8 ja 6.
x=\frac{-4±\sqrt{64}}{2\left(-2\right)}
Lisää 16 lukuun 48.
x=\frac{-4±8}{2\left(-2\right)}
Ota luvun 64 neliöjuuri.
x=\frac{-4±8}{-4}
Kerro 2 ja -2.
x=\frac{4}{-4}
Ratkaise nyt yhtälö x=\frac{-4±8}{-4}, kun ± on plusmerkkinen. Lisää -4 lukuun 8.
x=-1
Jaa 4 luvulla -4.
x=-\frac{12}{-4}
Ratkaise nyt yhtälö x=\frac{-4±8}{-4}, kun ± on miinusmerkkinen. Vähennä 8 luvusta -4.
x=3
Jaa -12 luvulla -4.
x=-1 x=3
Yhtälö on nyt ratkaistu.
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Muuttuja x ei voi olla yhtä suuri kuin mikään arvoista -2,0, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x\left(x+2\right), joka on lukujen x,x+2 pienin yhteinen jaettava.
3x+6+x\times 5=2x\left(x+2\right)
Laske lukujen x+2 ja 3 tulo käyttämällä osittelulakia.
8x+6=2x\left(x+2\right)
Selvitä 8x yhdistämällä 3x ja x\times 5.
8x+6=2x^{2}+4x
Laske lukujen 2x ja x+2 tulo käyttämällä osittelulakia.
8x+6-2x^{2}=4x
Vähennä 2x^{2} molemmilta puolilta.
8x+6-2x^{2}-4x=0
Vähennä 4x molemmilta puolilta.
4x+6-2x^{2}=0
Selvitä 4x yhdistämällä 8x ja -4x.
4x-2x^{2}=-6
Vähennä 6 molemmilta puolilta. Nolla miinus mikä tahansa luku on luvun vastaluku.
-2x^{2}+4x=-6
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=-\frac{6}{-2}
Jaa molemmat puolet luvulla -2.
x^{2}+\frac{4}{-2}x=-\frac{6}{-2}
Jakaminen luvulla -2 kumoaa kertomisen luvulla -2.
x^{2}-2x=-\frac{6}{-2}
Jaa 4 luvulla -2.
x^{2}-2x=3
Jaa -6 luvulla -2.
x^{2}-2x+1=3+1
Jaa -2 (x-termin kerroin) 2:lla, jolloin saadaan -1. Lisää sitten -1:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-2x+1=4
Lisää 3 lukuun 1.
\left(x-1\right)^{2}=4
Jaa x^{2}-2x+1 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-1=2 x-1=-2
Sievennä.
x=3 x=-1
Lisää 1 yhtälön kummallekin puolelle.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}