Hyppää pääsisältöön
Laske
Tick mark Image
Derivoi muuttujan a suhteen
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

\frac{2ba^{3}}{2ab\left(a+1\right)}
Jaa tekijöihin lausekkeet, joita ei ole jo jaettu tekijöihin.
\frac{a^{2}}{a+1}
Supista 2ab sekä osoittajasta että nimittäjästä.
\frac{\left(2ba^{2}+2ba^{1}\right)\frac{\mathrm{d}}{\mathrm{d}a}(2ba^{3})-2ba^{3}\frac{\mathrm{d}}{\mathrm{d}a}(2ba^{2}+2ba^{1})}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Kun tarkastellaan kahta derivoituvaa funktiota, funktioiden osamäärän derivaatta on nimittäjä kertaa osoittajan derivaatta miinus osoittaja kertaa nimittäjän derivaatta ja tämä kaikki jaettuna nimittäjän neliöllä.
\frac{\left(2ba^{2}+2ba^{1}\right)\times 3\times 2ba^{3-1}-2ba^{3}\left(2\times 2ba^{2-1}+2ba^{1-1}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Polynomin derivaatta on sen termien derivaattojen summa. Vakiotermin derivaatta on 0. Lausekkeen ax^{n} derivaatta on nax^{n-1}.
\frac{\left(2ba^{2}+2ba^{1}\right)\times 6ba^{2}-2ba^{3}\left(4ba^{1}+2ba^{0}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Sievennä.
\frac{2ba^{2}\times 6ba^{2}+2ba^{1}\times 6ba^{2}-2ba^{3}\left(4ba^{1}+2ba^{0}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Kerro 2ba^{2}+2ba^{1} ja 6ba^{2}.
\frac{2ba^{2}\times 6ba^{2}+2ba^{1}\times 6ba^{2}-\left(2ba^{3}\times 4ba^{1}+2ba^{3}\times 2ba^{0}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Kerro 2ba^{3} ja 4ba^{1}+2ba^{0}.
\frac{2b\times 6ba^{2+2}+2b\times 6ba^{1+2}-\left(2b\times 4ba^{3+1}+2b\times 2ba^{3}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Jos haluat kertoa samankantaiset potenssit, laske niiden eksponentit yhteen.
\frac{12b^{2}a^{4}+12b^{2}a^{3}-\left(8b^{2}a^{4}+4b^{2}a^{3}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Sievennä.
\frac{4b^{2}a^{4}+8b^{2}a^{3}}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Yhdistä samanmuotoiset termit.
\frac{4b^{2}a^{4}+8b^{2}a^{3}}{\left(2ba^{2}+2ba\right)^{2}}
Mille tahansa termille t pätee t^{1}=t.