Hyppää pääsisältöön
Laske
Tick mark Image
Lavenna
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Laske lukujen x+3 ja x+4 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Tarkastele lauseketta \left(x+1\right)\left(x-1\right). Kertolasku voidaan muuntaa neliöiden erotukseksi seuraavalla säännöllä: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Korota 1 neliöön.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Laske lukujen x^{2} ja 1+x tulo käyttämällä osittelulakia.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Laske lukujen 3 ja x+3 tulo käyttämällä osittelulakia.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Kerro \frac{x^{2}+7x+12}{x^{2}-1} ja \frac{x^{2}+x^{3}}{x+4} kertomalla osoittajat keskenään ja nimittäjät keskenään.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Kerro \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} ja \frac{x-1}{3x+9} kertomalla osoittajat keskenään ja nimittäjät keskenään.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Jaa tekijöihin lausekkeet, joita ei ole jo jaettu tekijöihin.
\frac{x^{2}}{3}
Supista \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) sekä osoittajasta että nimittäjästä.
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Laske lukujen x+3 ja x+4 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Tarkastele lauseketta \left(x+1\right)\left(x-1\right). Kertolasku voidaan muuntaa neliöiden erotukseksi seuraavalla säännöllä: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Korota 1 neliöön.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Laske lukujen x^{2} ja 1+x tulo käyttämällä osittelulakia.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Laske lukujen 3 ja x+3 tulo käyttämällä osittelulakia.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Kerro \frac{x^{2}+7x+12}{x^{2}-1} ja \frac{x^{2}+x^{3}}{x+4} kertomalla osoittajat keskenään ja nimittäjät keskenään.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Kerro \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} ja \frac{x-1}{3x+9} kertomalla osoittajat keskenään ja nimittäjät keskenään.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Jaa tekijöihin lausekkeet, joita ei ole jo jaettu tekijöihin.
\frac{x^{2}}{3}
Supista \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) sekä osoittajasta että nimittäjästä.