Laske
n_{8}+\frac{e}{2}+\frac{729}{2}
Jaa tekijöihin
\frac{2n_{8}+e+729}{2}
Jakaa
Kopioitu leikepöydälle
\frac{\left(3+3\right)!+e\times 1^{2}+\sqrt{10^{2}}-1}{2}+1n_{8}
Selvitä 3 laskemalla yhteen 1 ja 2.
\frac{6!+e\times 1^{2}+\sqrt{10^{2}}-1}{2}+1n_{8}
Selvitä 6 laskemalla yhteen 3 ja 3.
\frac{720+e\times 1^{2}+\sqrt{10^{2}}-1}{2}+1n_{8}
6:n kertoma on 720.
\frac{720+e\times 1+\sqrt{10^{2}}-1}{2}+1n_{8}
Laske 1 potenssiin 2, jolloin ratkaisuksi tulee 1.
\frac{720+e\times 1+\sqrt{100}-1}{2}+1n_{8}
Laske 10 potenssiin 2, jolloin ratkaisuksi tulee 100.
\frac{720+e\times 1+10-1}{2}+1n_{8}
Laske luvun 100 neliöjuuri, saat vastaukseksi 10.
\frac{730+e\times 1-1}{2}+1n_{8}
Selvitä 730 laskemalla yhteen 720 ja 10.
\frac{729+e\times 1}{2}+1n_{8}
Vähennä 1 luvusta 730 saadaksesi tuloksen 729.
\frac{729+e\times 1}{2}+\frac{2\times 1n_{8}}{2}
Jos haluat lisätä tai vähentää lausekkeita, lavenna ne niin, että niiden nimittäjät ovat samat. Kerro 1n_{8} ja \frac{2}{2}.
\frac{729+e\times 1+2\times 1n_{8}}{2}
Koska arvoilla \frac{729+e\times 1}{2} ja \frac{2\times 1n_{8}}{2} on sama nimittäjä, laske ne yhteen laskemalla niiden osoittajat yhteen.
\frac{729+e+2n_{8}}{2}
Suorita kertolaskut kohteessa 729+e\times 1+2\times 1n_{8}.
\frac{729+e+2n_{8}}{2}
Jaa tekijöihin \frac{1}{2}:n suhteen.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}