پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

x-\frac{x+1}{x}=0
\frac{x+1}{x} را از هر دو طرف تفریق کنید.
\frac{xx}{x}-\frac{x+1}{x}=0
برای اضافه کردن یا تفریق عبارت‌ها، آنها را گسترش دهید تا مخرج آنها یکی شود. x بار \frac{x}{x}.
\frac{xx-\left(x+1\right)}{x}=0
از آنجا که \frac{xx}{x} و \frac{x+1}{x} دارای مخرج مشترک هستند، با کم کردن صورت کسرها آنها را تفریق کنید.
\frac{x^{2}-x-1}{x}=0
عمل ضرب را در xx-\left(x+1\right) انجام دهید.
x^{2}-x-1=0
متغیر x نباید برابر 0 باشد زیرا تقسیم بر صفر تعریف نشده است. هر دو طرف معادله را در x ضرب کنید.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، -1 را با b و -1 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
-4 بار -1.
x=\frac{-\left(-1\right)±\sqrt{5}}{2}
1 را به 4 اضافه کنید.
x=\frac{1±\sqrt{5}}{2}
متضاد -1 عبارت است از 1.
x=\frac{\sqrt{5}+1}{2}
اکنون معادله x=\frac{1±\sqrt{5}}{2} را وقتی که ± مثبت است حل کنید. 1 را به \sqrt{5} اضافه کنید.
x=\frac{1-\sqrt{5}}{2}
اکنون معادله x=\frac{1±\sqrt{5}}{2} وقتی که ± منفی است حل کنید. \sqrt{5} را از 1 تفریق کنید.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
این معادله اکنون حل شده است.
x-\frac{x+1}{x}=0
\frac{x+1}{x} را از هر دو طرف تفریق کنید.
\frac{xx}{x}-\frac{x+1}{x}=0
برای اضافه کردن یا تفریق عبارت‌ها، آنها را گسترش دهید تا مخرج آنها یکی شود. x بار \frac{x}{x}.
\frac{xx-\left(x+1\right)}{x}=0
از آنجا که \frac{xx}{x} و \frac{x+1}{x} دارای مخرج مشترک هستند، با کم کردن صورت کسرها آنها را تفریق کنید.
\frac{x^{2}-x-1}{x}=0
عمل ضرب را در xx-\left(x+1\right) انجام دهید.
x^{2}-x-1=0
متغیر x نباید برابر 0 باشد زیرا تقسیم بر صفر تعریف نشده است. هر دو طرف معادله را در x ضرب کنید.
x^{2}-x=1
1 را به هر دو طرف اضافه کنید. هر چیزی به علاوه صفر، می‌شود خودش.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
-1، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -\frac{1}{2} شود. سپس مجذور -\frac{1}{2} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
-\frac{1}{2} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
1 را به \frac{1}{4} اضافه کنید.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
عامل x^{2}-x+\frac{1}{4}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
ساده کنید.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
\frac{1}{2} را به هر دو طرف معامله اضافه کنید.