پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

x^{2}-8x+12=0
12 را به هر دو طرف اضافه کنید.
a+b=-8 ab=12
برای حل معادله، با استفاده از فرمول x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) از x^{2}-8x+12 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,-12 -2,-6 -3,-4
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b منفی است، a و b هر دو منفی هستند. تمام جفت‌های صحیح را که حاصلشان 12 است فهرست کنید.
-1-12=-13 -2-6=-8 -3-4=-7
مجموع هر زوج را محاسبه کنید.
a=-6 b=-2
جواب زوجی است که مجموع آن -8 است.
\left(x-6\right)\left(x-2\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیری‌شده \left(x+a\right)\left(x+b\right) را بازنویسی کنید.
x=6 x=2
برای پیدا کردن جواب‌های معادله، x-6=0 و x-2=0 را حل کنید.
x^{2}-8x+12=0
12 را به هر دو طرف اضافه کنید.
a+b=-8 ab=1\times 12=12
برای حل معادله، با گروه‌بندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید به‌صورت x^{2}+ax+bx+12 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,-12 -2,-6 -3,-4
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b منفی است، a و b هر دو منفی هستند. تمام جفت‌های صحیح را که حاصلشان 12 است فهرست کنید.
-1-12=-13 -2-6=-8 -3-4=-7
مجموع هر زوج را محاسبه کنید.
a=-6 b=-2
جواب زوجی است که مجموع آن -8 است.
\left(x^{2}-6x\right)+\left(-2x+12\right)
x^{2}-8x+12 را به‌عنوان \left(x^{2}-6x\right)+\left(-2x+12\right) بازنویسی کنید.
x\left(x-6\right)-2\left(x-6\right)
در گروه اول از x و در گروه دوم از -2 فاکتور بگیرید.
\left(x-6\right)\left(x-2\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-6 فاکتور بگیرید.
x=6 x=2
برای پیدا کردن جواب‌های معادله، x-6=0 و x-2=0 را حل کنید.
x^{2}-8x=-12
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x^{2}-8x-\left(-12\right)=-12-\left(-12\right)
12 را به هر دو طرف معامله اضافه کنید.
x^{2}-8x-\left(-12\right)=0
تفریق -12 از خودش برابر با 0 می‌شود.
x^{2}-8x+12=0
-12 را از 0 تفریق کنید.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، -8 را با b و 12 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
-8 را مجذور کنید.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
-4 بار 12.
x=\frac{-\left(-8\right)±\sqrt{16}}{2}
64 را به -48 اضافه کنید.
x=\frac{-\left(-8\right)±4}{2}
ریشه دوم 16 را به دست آورید.
x=\frac{8±4}{2}
متضاد -8 عبارت است از 8.
x=\frac{12}{2}
اکنون معادله x=\frac{8±4}{2} را وقتی که ± مثبت است حل کنید. 8 را به 4 اضافه کنید.
x=6
12 را بر 2 تقسیم کنید.
x=\frac{4}{2}
اکنون معادله x=\frac{8±4}{2} وقتی که ± منفی است حل کنید. 4 را از 8 تفریق کنید.
x=2
4 را بر 2 تقسیم کنید.
x=6 x=2
این معادله اکنون حل شده است.
x^{2}-8x=-12
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
x^{2}-8x+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
-8، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -4 شود. سپس مجذور -4 را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}-8x+16=-12+16
-4 را مجذور کنید.
x^{2}-8x+16=4
-12 را به 16 اضافه کنید.
\left(x-4\right)^{2}=4
عامل x^{2}-8x+16. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-4\right)^{2}}=\sqrt{4}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-4=2 x-4=-2
ساده کنید.
x=6 x=2
4 را به هر دو طرف معامله اضافه کنید.