برای x حل کنید
x=3
x=5
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
a+b=-8 ab=15
برای حل معادله، با استفاده از فرمول x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) از x^{2}-8x+15 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,-15 -3,-5
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b منفی است، a و b هر دو منفی هستند. تمام جفتهای صحیح را که حاصلشان 15 است فهرست کنید.
-1-15=-16 -3-5=-8
مجموع هر زوج را محاسبه کنید.
a=-5 b=-3
جواب زوجی است که مجموع آن -8 است.
\left(x-5\right)\left(x-3\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیریشده \left(x+a\right)\left(x+b\right) را بازنویسی کنید.
x=5 x=3
برای پیدا کردن جوابهای معادله، x-5=0 و x-3=0 را حل کنید.
a+b=-8 ab=1\times 15=15
برای حل معادله، با گروهبندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید بهصورت x^{2}+ax+bx+15 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,-15 -3,-5
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b منفی است، a و b هر دو منفی هستند. تمام جفتهای صحیح را که حاصلشان 15 است فهرست کنید.
-1-15=-16 -3-5=-8
مجموع هر زوج را محاسبه کنید.
a=-5 b=-3
جواب زوجی است که مجموع آن -8 است.
\left(x^{2}-5x\right)+\left(-3x+15\right)
x^{2}-8x+15 را بهعنوان \left(x^{2}-5x\right)+\left(-3x+15\right) بازنویسی کنید.
x\left(x-5\right)-3\left(x-5\right)
در گروه اول از x و در گروه دوم از -3 فاکتور بگیرید.
\left(x-5\right)\left(x-3\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک x-5 فاکتور بگیرید.
x=5 x=3
برای پیدا کردن جوابهای معادله، x-5=0 و x-3=0 را حل کنید.
x^{2}-8x+15=0
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، -8 را با b و 15 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
-8 را مجذور کنید.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
-4 بار 15.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
64 را به -60 اضافه کنید.
x=\frac{-\left(-8\right)±2}{2}
ریشه دوم 4 را به دست آورید.
x=\frac{8±2}{2}
متضاد -8 عبارت است از 8.
x=\frac{10}{2}
اکنون معادله x=\frac{8±2}{2} را وقتی که ± مثبت است حل کنید. 8 را به 2 اضافه کنید.
x=5
10 را بر 2 تقسیم کنید.
x=\frac{6}{2}
اکنون معادله x=\frac{8±2}{2} وقتی که ± منفی است حل کنید. 2 را از 8 تفریق کنید.
x=3
6 را بر 2 تقسیم کنید.
x=5 x=3
این معادله اکنون حل شده است.
x^{2}-8x+15=0
معادلات درجه دوم مانند این مورد را میتوان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
x^{2}-8x+15-15=-15
15 را از هر دو طرف معادله تفریق کنید.
x^{2}-8x=-15
تفریق 15 از خودش برابر با 0 میشود.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
-8، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -4 شود. سپس مجذور -4 را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}-8x+16=-15+16
-4 را مجذور کنید.
x^{2}-8x+16=1
-15 را به 16 اضافه کنید.
\left(x-4\right)^{2}=1
عامل x^{2}-8x+16. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-4=1 x-4=-1
ساده کنید.
x=5 x=3
4 را به هر دو طرف معامله اضافه کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}