برای x حل کنید
x=-2
x=4
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
a+b=-2 ab=-8
برای حل معادله، با استفاده از فرمول x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) از x^{2}-2x-8 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
1,-8 2,-4
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تمام جفتهای صحیح را که حاصلشان -8 است فهرست کنید.
1-8=-7 2-4=-2
مجموع هر زوج را محاسبه کنید.
a=-4 b=2
جواب زوجی است که مجموع آن -2 است.
\left(x-4\right)\left(x+2\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیریشده \left(x+a\right)\left(x+b\right) را بازنویسی کنید.
x=4 x=-2
برای پیدا کردن جوابهای معادله، x-4=0 و x+2=0 را حل کنید.
a+b=-2 ab=1\left(-8\right)=-8
برای حل معادله، با گروهبندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید بهصورت x^{2}+ax+bx-8 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
1,-8 2,-4
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تمام جفتهای صحیح را که حاصلشان -8 است فهرست کنید.
1-8=-7 2-4=-2
مجموع هر زوج را محاسبه کنید.
a=-4 b=2
جواب زوجی است که مجموع آن -2 است.
\left(x^{2}-4x\right)+\left(2x-8\right)
x^{2}-2x-8 را بهعنوان \left(x^{2}-4x\right)+\left(2x-8\right) بازنویسی کنید.
x\left(x-4\right)+2\left(x-4\right)
در گروه اول از x و در گروه دوم از 2 فاکتور بگیرید.
\left(x-4\right)\left(x+2\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک x-4 فاکتور بگیرید.
x=4 x=-2
برای پیدا کردن جوابهای معادله، x-4=0 و x+2=0 را حل کنید.
x^{2}-2x-8=0
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، -2 را با b و -8 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
-2 را مجذور کنید.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
-4 بار -8.
x=\frac{-\left(-2\right)±\sqrt{36}}{2}
4 را به 32 اضافه کنید.
x=\frac{-\left(-2\right)±6}{2}
ریشه دوم 36 را به دست آورید.
x=\frac{2±6}{2}
متضاد -2 عبارت است از 2.
x=\frac{8}{2}
اکنون معادله x=\frac{2±6}{2} را وقتی که ± مثبت است حل کنید. 2 را به 6 اضافه کنید.
x=4
8 را بر 2 تقسیم کنید.
x=-\frac{4}{2}
اکنون معادله x=\frac{2±6}{2} وقتی که ± منفی است حل کنید. 6 را از 2 تفریق کنید.
x=-2
-4 را بر 2 تقسیم کنید.
x=4 x=-2
این معادله اکنون حل شده است.
x^{2}-2x-8=0
معادلات درجه دوم مانند این مورد را میتوان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
x^{2}-2x-8-\left(-8\right)=-\left(-8\right)
8 را به هر دو طرف معامله اضافه کنید.
x^{2}-2x=-\left(-8\right)
تفریق -8 از خودش برابر با 0 میشود.
x^{2}-2x=8
-8 را از 0 تفریق کنید.
x^{2}-2x+1=8+1
-2، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -1 شود. سپس مجذور -1 را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}-2x+1=9
8 را به 1 اضافه کنید.
\left(x-1\right)^{2}=9
عامل x^{2}-2x+1. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-1=3 x-1=-3
ساده کنید.
x=4 x=-2
1 را به هر دو طرف معامله اضافه کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}