پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

a+b=-2 ab=1
برای حل معادله، با استفاده از فرمول x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) از x^{2}-2x+1 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
a=-1 b=-1
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b منفی است، a و b هر دو منفی هستند. تنها جواب دستگاه این زوج است.
\left(x-1\right)\left(x-1\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیری‌شده \left(x+a\right)\left(x+b\right) را بازنویسی کنید.
\left(x-1\right)^{2}
به عنوان یک مربع دو جمله‌ای بازنویسی کنید.
x=1
برای پیدا کردن جواب معادله، x-1=0 را حل کنید.
a+b=-2 ab=1\times 1=1
برای حل معادله، با گروه‌بندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید به‌صورت x^{2}+ax+bx+1 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
a=-1 b=-1
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b منفی است، a و b هر دو منفی هستند. تنها جواب دستگاه این زوج است.
\left(x^{2}-x\right)+\left(-x+1\right)
x^{2}-2x+1 را به‌عنوان \left(x^{2}-x\right)+\left(-x+1\right) بازنویسی کنید.
x\left(x-1\right)-\left(x-1\right)
در گروه اول از x و در گروه دوم از -1 فاکتور بگیرید.
\left(x-1\right)\left(x-1\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-1 فاکتور بگیرید.
\left(x-1\right)^{2}
به عنوان یک مربع دو جمله‌ای بازنویسی کنید.
x=1
برای پیدا کردن جواب معادله، x-1=0 را حل کنید.
x^{2}-2x+1=0
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، -2 را با b و 1 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2}
-2 را مجذور کنید.
x=\frac{-\left(-2\right)±\sqrt{0}}{2}
4 را به -4 اضافه کنید.
x=-\frac{-2}{2}
ریشه دوم 0 را به دست آورید.
x=\frac{2}{2}
متضاد -2 عبارت است از 2.
x=1
2 را بر 2 تقسیم کنید.
x^{2}-2x+1=0
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
\left(x-1\right)^{2}=0
عامل x^{2}-2x+1. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-1=0 x-1=0
ساده کنید.
x=1 x=1
1 را به هر دو طرف معامله اضافه کنید.
x=1
این معادله اکنون حل شده است. راهکارها مشابه هستند.