پرش به محتوای اصلی
عامل
Tick mark Image
ارزیابی
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

a+b=-11 ab=1\left(-60\right)=-60
با گروه‌بندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید به‌صورت x^{2}+ax+bx-60 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تمام جفت‌های صحیح را که حاصلشان -60 است فهرست کنید.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
مجموع هر زوج را محاسبه کنید.
a=-15 b=4
جواب زوجی است که مجموع آن -11 است.
\left(x^{2}-15x\right)+\left(4x-60\right)
x^{2}-11x-60 را به‌عنوان \left(x^{2}-15x\right)+\left(4x-60\right) بازنویسی کنید.
x\left(x-15\right)+4\left(x-15\right)
در گروه اول از x و در گروه دوم از 4 فاکتور بگیرید.
\left(x-15\right)\left(x+4\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-15 فاکتور بگیرید.
x^{2}-11x-60=0
چند جمله‌ای درجه دوم را می‌توان با استفاده از تبدیل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور گرفت، به طوری که x_{1} و x_{2} راه حل معادله درجه دوم ax^{2}+bx+c=0 است.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-60\right)}}{2}
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-60\right)}}{2}
-11 را مجذور کنید.
x=\frac{-\left(-11\right)±\sqrt{121+240}}{2}
-4 بار -60.
x=\frac{-\left(-11\right)±\sqrt{361}}{2}
121 را به 240 اضافه کنید.
x=\frac{-\left(-11\right)±19}{2}
ریشه دوم 361 را به دست آورید.
x=\frac{11±19}{2}
متضاد -11 عبارت است از 11.
x=\frac{30}{2}
اکنون معادله x=\frac{11±19}{2} را وقتی که ± مثبت است حل کنید. 11 را به 19 اضافه کنید.
x=15
30 را بر 2 تقسیم کنید.
x=-\frac{8}{2}
اکنون معادله x=\frac{11±19}{2} وقتی که ± منفی است حل کنید. 19 را از 11 تفریق کنید.
x=-4
-8 را بر 2 تقسیم کنید.
x^{2}-11x-60=\left(x-15\right)\left(x-\left(-4\right)\right)
عبارت اصلی را با استفاده از ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور بگیرید. 15 را برای x_{1} و -4 را برای x_{2} جایگزین کنید.
x^{2}-11x-60=\left(x-15\right)\left(x+4\right)
همه عبارت‌های فرم p-\left(-q\right) را به p+q ساده کنید.