پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

a+b=5 ab=-36
برای حل معادله، با استفاده از فرمول x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) از x^{2}+5x-36 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,36 -2,18 -3,12 -4,9 -6,6
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -36 است فهرست کنید.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
مجموع هر زوج را محاسبه کنید.
a=-4 b=9
جواب زوجی است که مجموع آن 5 است.
\left(x-4\right)\left(x+9\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیری‌شده \left(x+a\right)\left(x+b\right) را بازنویسی کنید.
x=4 x=-9
برای پیدا کردن جواب‌های معادله، x-4=0 و x+9=0 را حل کنید.
a+b=5 ab=1\left(-36\right)=-36
برای حل معادله، با گروه‌بندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید به‌صورت x^{2}+ax+bx-36 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,36 -2,18 -3,12 -4,9 -6,6
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -36 است فهرست کنید.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
مجموع هر زوج را محاسبه کنید.
a=-4 b=9
جواب زوجی است که مجموع آن 5 است.
\left(x^{2}-4x\right)+\left(9x-36\right)
x^{2}+5x-36 را به‌عنوان \left(x^{2}-4x\right)+\left(9x-36\right) بازنویسی کنید.
x\left(x-4\right)+9\left(x-4\right)
در گروه اول از x و در گروه دوم از 9 فاکتور بگیرید.
\left(x-4\right)\left(x+9\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-4 فاکتور بگیرید.
x=4 x=-9
برای پیدا کردن جواب‌های معادله، x-4=0 و x+9=0 را حل کنید.
x^{2}+5x-36=0
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-5±\sqrt{5^{2}-4\left(-36\right)}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، 5 را با b و -36 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-5±\sqrt{25-4\left(-36\right)}}{2}
5 را مجذور کنید.
x=\frac{-5±\sqrt{25+144}}{2}
-4 بار -36.
x=\frac{-5±\sqrt{169}}{2}
25 را به 144 اضافه کنید.
x=\frac{-5±13}{2}
ریشه دوم 169 را به دست آورید.
x=\frac{8}{2}
اکنون معادله x=\frac{-5±13}{2} را وقتی که ± مثبت است حل کنید. -5 را به 13 اضافه کنید.
x=4
8 را بر 2 تقسیم کنید.
x=-\frac{18}{2}
اکنون معادله x=\frac{-5±13}{2} وقتی که ± منفی است حل کنید. 13 را از -5 تفریق کنید.
x=-9
-18 را بر 2 تقسیم کنید.
x=4 x=-9
این معادله اکنون حل شده است.
x^{2}+5x-36=0
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
x^{2}+5x-36-\left(-36\right)=-\left(-36\right)
36 را به هر دو طرف معامله اضافه کنید.
x^{2}+5x=-\left(-36\right)
تفریق -36 از خودش برابر با 0 می‌شود.
x^{2}+5x=36
-36 را از 0 تفریق کنید.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=36+\left(\frac{5}{2}\right)^{2}
5، ضريب جمله x را بر 2 تقسیم کنید تا حاصل \frac{5}{2} شود. سپس مجذور \frac{5}{2} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}+5x+\frac{25}{4}=36+\frac{25}{4}
\frac{5}{2} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}+5x+\frac{25}{4}=\frac{169}{4}
36 را به \frac{25}{4} اضافه کنید.
\left(x+\frac{5}{2}\right)^{2}=\frac{169}{4}
عامل x^{2}+5x+\frac{25}{4}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+\frac{5}{2}=\frac{13}{2} x+\frac{5}{2}=-\frac{13}{2}
ساده کنید.
x=4 x=-9
\frac{5}{2} را از هر دو طرف معادله تفریق کنید.