پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

x^{2}+3x-28=0
28 را از هر دو طرف تفریق کنید.
a+b=3 ab=-28
برای حل معادله، با استفاده از فرمول x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) از x^{2}+3x-28 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,28 -2,14 -4,7
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -28 است فهرست کنید.
-1+28=27 -2+14=12 -4+7=3
مجموع هر زوج را محاسبه کنید.
a=-4 b=7
جواب زوجی است که مجموع آن 3 است.
\left(x-4\right)\left(x+7\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیری‌شده \left(x+a\right)\left(x+b\right) را بازنویسی کنید.
x=4 x=-7
برای پیدا کردن جواب‌های معادله، x-4=0 و x+7=0 را حل کنید.
x^{2}+3x-28=0
28 را از هر دو طرف تفریق کنید.
a+b=3 ab=1\left(-28\right)=-28
برای حل معادله، با گروه‌بندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید به‌صورت x^{2}+ax+bx-28 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,28 -2,14 -4,7
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -28 است فهرست کنید.
-1+28=27 -2+14=12 -4+7=3
مجموع هر زوج را محاسبه کنید.
a=-4 b=7
جواب زوجی است که مجموع آن 3 است.
\left(x^{2}-4x\right)+\left(7x-28\right)
x^{2}+3x-28 را به‌عنوان \left(x^{2}-4x\right)+\left(7x-28\right) بازنویسی کنید.
x\left(x-4\right)+7\left(x-4\right)
در گروه اول از x و در گروه دوم از 7 فاکتور بگیرید.
\left(x-4\right)\left(x+7\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-4 فاکتور بگیرید.
x=4 x=-7
برای پیدا کردن جواب‌های معادله، x-4=0 و x+7=0 را حل کنید.
x^{2}+3x=28
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x^{2}+3x-28=28-28
28 را از هر دو طرف معادله تفریق کنید.
x^{2}+3x-28=0
تفریق 28 از خودش برابر با 0 می‌شود.
x=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، 3 را با b و -28 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
3 را مجذور کنید.
x=\frac{-3±\sqrt{9+112}}{2}
-4 بار -28.
x=\frac{-3±\sqrt{121}}{2}
9 را به 112 اضافه کنید.
x=\frac{-3±11}{2}
ریشه دوم 121 را به دست آورید.
x=\frac{8}{2}
اکنون معادله x=\frac{-3±11}{2} را وقتی که ± مثبت است حل کنید. -3 را به 11 اضافه کنید.
x=4
8 را بر 2 تقسیم کنید.
x=-\frac{14}{2}
اکنون معادله x=\frac{-3±11}{2} وقتی که ± منفی است حل کنید. 11 را از -3 تفریق کنید.
x=-7
-14 را بر 2 تقسیم کنید.
x=4 x=-7
این معادله اکنون حل شده است.
x^{2}+3x=28
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
3، ضريب جمله x را بر 2 تقسیم کنید تا حاصل \frac{3}{2} شود. سپس مجذور \frac{3}{2} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
\frac{3}{2} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
28 را به \frac{9}{4} اضافه کنید.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
عامل x^{2}+3x+\frac{9}{4}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
ساده کنید.
x=4 x=-7
\frac{3}{2} را از هر دو طرف معادله تفریق کنید.