عامل
\left(p-5\right)\left(p+4\right)
ارزیابی
\left(p-5\right)\left(p+4\right)
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
a+b=-1 ab=1\left(-20\right)=-20
با گروهبندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید بهصورت p^{2}+ap+bp-20 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
1,-20 2,-10 4,-5
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تمام جفتهای صحیح را که حاصلشان -20 است فهرست کنید.
1-20=-19 2-10=-8 4-5=-1
مجموع هر زوج را محاسبه کنید.
a=-5 b=4
جواب زوجی است که مجموع آن -1 است.
\left(p^{2}-5p\right)+\left(4p-20\right)
p^{2}-p-20 را بهعنوان \left(p^{2}-5p\right)+\left(4p-20\right) بازنویسی کنید.
p\left(p-5\right)+4\left(p-5\right)
در گروه اول از p و در گروه دوم از 4 فاکتور بگیرید.
\left(p-5\right)\left(p+4\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک p-5 فاکتور بگیرید.
p^{2}-p-20=0
چند جملهای درجه دوم را میتوان با استفاده از تبدیل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور گرفت، به طوری که x_{1} و x_{2} راه حل معادله درجه دوم ax^{2}+bx+c=0 است.
p=\frac{-\left(-1\right)±\sqrt{1-4\left(-20\right)}}{2}
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
p=\frac{-\left(-1\right)±\sqrt{1+80}}{2}
-4 بار -20.
p=\frac{-\left(-1\right)±\sqrt{81}}{2}
1 را به 80 اضافه کنید.
p=\frac{-\left(-1\right)±9}{2}
ریشه دوم 81 را به دست آورید.
p=\frac{1±9}{2}
متضاد -1 عبارت است از 1.
p=\frac{10}{2}
اکنون معادله p=\frac{1±9}{2} را وقتی که ± مثبت است حل کنید. 1 را به 9 اضافه کنید.
p=5
10 را بر 2 تقسیم کنید.
p=-\frac{8}{2}
اکنون معادله p=\frac{1±9}{2} وقتی که ± منفی است حل کنید. 9 را از 1 تفریق کنید.
p=-4
-8 را بر 2 تقسیم کنید.
p^{2}-p-20=\left(p-5\right)\left(p-\left(-4\right)\right)
عبارت اصلی را با استفاده از ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور بگیرید. 5 را برای x_{1} و -4 را برای x_{2} جایگزین کنید.
p^{2}-p-20=\left(p-5\right)\left(p+4\right)
همه عبارتهای فرم p-\left(-q\right) را به p+q ساده کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}