برای p حل کنید
p=-2
p=6
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
p^{2}-4p=12
4p را از هر دو طرف تفریق کنید.
p^{2}-4p-12=0
12 را از هر دو طرف تفریق کنید.
a+b=-4 ab=-12
برای حل معادله، با استفاده از فرمول p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right) از p^{2}-4p-12 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
1,-12 2,-6 3,-4
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تمام جفتهای صحیح را که حاصلشان -12 است فهرست کنید.
1-12=-11 2-6=-4 3-4=-1
مجموع هر زوج را محاسبه کنید.
a=-6 b=2
جواب زوجی است که مجموع آن -4 است.
\left(p-6\right)\left(p+2\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیریشده \left(p+a\right)\left(p+b\right) را بازنویسی کنید.
p=6 p=-2
برای پیدا کردن جوابهای معادله، p-6=0 و p+2=0 را حل کنید.
p^{2}-4p=12
4p را از هر دو طرف تفریق کنید.
p^{2}-4p-12=0
12 را از هر دو طرف تفریق کنید.
a+b=-4 ab=1\left(-12\right)=-12
برای حل معادله، با گروهبندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید بهصورت p^{2}+ap+bp-12 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
1,-12 2,-6 3,-4
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تمام جفتهای صحیح را که حاصلشان -12 است فهرست کنید.
1-12=-11 2-6=-4 3-4=-1
مجموع هر زوج را محاسبه کنید.
a=-6 b=2
جواب زوجی است که مجموع آن -4 است.
\left(p^{2}-6p\right)+\left(2p-12\right)
p^{2}-4p-12 را بهعنوان \left(p^{2}-6p\right)+\left(2p-12\right) بازنویسی کنید.
p\left(p-6\right)+2\left(p-6\right)
در گروه اول از p و در گروه دوم از 2 فاکتور بگیرید.
\left(p-6\right)\left(p+2\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک p-6 فاکتور بگیرید.
p=6 p=-2
برای پیدا کردن جوابهای معادله، p-6=0 و p+2=0 را حل کنید.
p^{2}-4p=12
4p را از هر دو طرف تفریق کنید.
p^{2}-4p-12=0
12 را از هر دو طرف تفریق کنید.
p=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، -4 را با b و -12 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
p=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
-4 را مجذور کنید.
p=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
-4 بار -12.
p=\frac{-\left(-4\right)±\sqrt{64}}{2}
16 را به 48 اضافه کنید.
p=\frac{-\left(-4\right)±8}{2}
ریشه دوم 64 را به دست آورید.
p=\frac{4±8}{2}
متضاد -4 عبارت است از 4.
p=\frac{12}{2}
اکنون معادله p=\frac{4±8}{2} را وقتی که ± مثبت است حل کنید. 4 را به 8 اضافه کنید.
p=6
12 را بر 2 تقسیم کنید.
p=-\frac{4}{2}
اکنون معادله p=\frac{4±8}{2} وقتی که ± منفی است حل کنید. 8 را از 4 تفریق کنید.
p=-2
-4 را بر 2 تقسیم کنید.
p=6 p=-2
این معادله اکنون حل شده است.
p^{2}-4p=12
4p را از هر دو طرف تفریق کنید.
p^{2}-4p+\left(-2\right)^{2}=12+\left(-2\right)^{2}
-4، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -2 شود. سپس مجذور -2 را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
p^{2}-4p+4=12+4
-2 را مجذور کنید.
p^{2}-4p+4=16
12 را به 4 اضافه کنید.
\left(p-2\right)^{2}=16
عامل p^{2}-4p+4. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(p-2\right)^{2}}=\sqrt{16}
ریشه دوم هر دو طرف معادله را به دست آورید.
p-2=4 p-2=-4
ساده کنید.
p=6 p=-2
2 را به هر دو طرف معامله اضافه کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}