پرش به محتوای اصلی
عامل
Tick mark Image
ارزیابی
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\left(x+6\right)\left(x^{2}-6x+8\right)
بر اساس قضیه ریشه گویا، تمام ریشه‌های گویای یک چندجمله‌ای به شکل \frac{p}{q} هستند، که در آن p به عبارت ثابت 48 و q به عامل پیشگام 1 تقسیم می‌شود. یکی از این ریشه‌ها -6 است. با تقسیم این چندجمله‌ای به x+6، از آن فاکتور بگیرید.
a+b=-6 ab=1\times 8=8
x^{2}-6x+8 را در نظر بگیرید. با گروه‌بندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید به‌صورت x^{2}+ax+bx+8 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,-8 -2,-4
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b منفی است، a و b هر دو منفی هستند. تمام جفت‌های صحیح را که حاصلشان 8 است فهرست کنید.
-1-8=-9 -2-4=-6
مجموع هر زوج را محاسبه کنید.
a=-4 b=-2
جواب زوجی است که مجموع آن -6 است.
\left(x^{2}-4x\right)+\left(-2x+8\right)
x^{2}-6x+8 را به‌عنوان \left(x^{2}-4x\right)+\left(-2x+8\right) بازنویسی کنید.
x\left(x-4\right)-2\left(x-4\right)
در گروه اول از x و در گروه دوم از -2 فاکتور بگیرید.
\left(x-4\right)\left(x-2\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-4 فاکتور بگیرید.
\left(x-4\right)\left(x-2\right)\left(x+6\right)
عبارت فاکتورگیری‌شده کامل را بازنویسی کنید.