عامل
\left(x-1\right)\left(3x-5\right)\left(4x+5\right)
ارزیابی
\left(x-1\right)\left(3x-5\right)\left(4x+5\right)
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\left(3x-5\right)\left(4x^{2}+x-5\right)
بر اساس قضیه ریشه گویا، تمام ریشههای گویای یک چندجملهای به شکل \frac{p}{q} هستند، که در آن p به عبارت ثابت 25 و q به عامل پیشگام 12 تقسیم میشود. یکی از این ریشهها \frac{5}{3} است. با تقسیم این چندجملهای به 3x-5، از آن فاکتور بگیرید.
a+b=1 ab=4\left(-5\right)=-20
4x^{2}+x-5 را در نظر بگیرید. با گروهبندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید بهصورت 4x^{2}+ax+bx-5 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,20 -2,10 -4,5
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفتهای صحیح را که حاصلشان -20 است فهرست کنید.
-1+20=19 -2+10=8 -4+5=1
مجموع هر زوج را محاسبه کنید.
a=-4 b=5
جواب زوجی است که مجموع آن 1 است.
\left(4x^{2}-4x\right)+\left(5x-5\right)
4x^{2}+x-5 را بهعنوان \left(4x^{2}-4x\right)+\left(5x-5\right) بازنویسی کنید.
4x\left(x-1\right)+5\left(x-1\right)
در گروه اول از 4x و در گروه دوم از 5 فاکتور بگیرید.
\left(x-1\right)\left(4x+5\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک x-1 فاکتور بگیرید.
\left(3x-5\right)\left(x-1\right)\left(4x+5\right)
عبارت فاکتورگیریشده کامل را بازنویسی کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}