پرش به محتوای اصلی
مشتق گرفتن w.r.t. x
Tick mark Image
ارزیابی
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1})-\left(-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)\right)}{\left(x^{1}-2\right)^{2}}
برای هر دو تابع مشتق‌پذیر، مشتق خارج قسمت دو تابع دترمینان ضربدر مشتق صورت کسر منهای صورت کسر ضربدر مشتق دترمینان است که همه بر مجذور دترمینان تقسیم می‌شوند.
\frac{\left(x^{1}-2\right)\left(-3\right)x^{1-1}-\left(-3x^{1}x^{1-1}\right)}{\left(x^{1}-2\right)^{2}}
مشتق یک چند جمله‌ای، مجموع مشتق‌های عبارت‌های آن است. مشتق یک عبارت ثابت 0 است. مشتق ax^{n} برابر است با nax^{n-1}.
\frac{\left(x^{1}-2\right)\left(-3\right)x^{0}-\left(-3x^{1}x^{0}\right)}{\left(x^{1}-2\right)^{2}}
محاسبات را انجام دهید.
\frac{x^{1}\left(-3\right)x^{0}-2\left(-3\right)x^{0}-\left(-3x^{1}x^{0}\right)}{\left(x^{1}-2\right)^{2}}
با استفاده از اموال توزیعی بسط دهید.
\frac{-3x^{1}-2\left(-3\right)x^{0}-\left(-3x^{1}\right)}{\left(x^{1}-2\right)^{2}}
برای ضرب توان‌های دارای پایه مشابه، توان‌های آنها را اضافه کنید.
\frac{-3x^{1}+6x^{0}-\left(-3x^{1}\right)}{\left(x^{1}-2\right)^{2}}
محاسبات را انجام دهید.
\frac{\left(-3-\left(-3\right)\right)x^{1}+6x^{0}}{\left(x^{1}-2\right)^{2}}
جمله‌های دارای متغیر مساوی را ترکیب کنید.
\frac{6x^{0}}{\left(x^{1}-2\right)^{2}}
-3 را از -3 تفریق کنید.
\frac{6x^{0}}{\left(x-2\right)^{2}}
برای هر عبارت t، t^{1}=t.
\frac{6\times 1}{\left(x-2\right)^{2}}
برای هر عبارت t به جز 0، t^{0}=1.
\frac{6}{\left(x-2\right)^{2}}
برای هر عبارت t، t\times 1=t و 1t=t.