ارزیابی
b
مشتق گرفتن w.r.t. b
1
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\frac{b^{2}}{b^{1}}
از قواعد توان برای سادهسازی عبارت استفاده کنید.
b^{2-1}
برای تقسیم توان دارای پایه مشابه، توان مخرج را از توان صورت کسر کم کنید.
b^{1}
1 را از 2 تفریق کنید.
b
برای هر عبارت t، t^{1}=t.
b^{2}\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{b})+\frac{1}{b}\frac{\mathrm{d}}{\mathrm{d}b}(b^{2})
برای توابع مشتقپذیر، مشتق حاصلضرب دو تابع یک برابر تابع مشتق دوم به علاوه دو برابر تابع مشتق اولی است.
b^{2}\left(-1\right)b^{-1-1}+\frac{1}{b}\times 2b^{2-1}
مشتق یک چند جملهای، مجموع مشتقهای عبارتهای آن است. مشتق یک عبارت ثابت 0 است. مشتق ax^{n} برابر است با nax^{n-1}.
b^{2}\left(-1\right)b^{-2}+\frac{1}{b}\times 2b^{1}
ساده کنید.
-b^{2-2}+2b^{-1+1}
برای ضرب توانهای دارای پایه مشابه، توانهای آنها را اضافه کنید.
-b^{0}+2b^{0}
ساده کنید.
-1+2\times 1
برای هر عبارت t به جز 0، t^{0}=1.
-1+2
برای هر عبارت t، t\times 1=t و 1t=t.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{1}b^{2-1})
برای تقسیم توان دارای پایه مشابه، توان مخرج را از توان صورت کسر کم کنید.
\frac{\mathrm{d}}{\mathrm{d}b}(b^{1})
محاسبات را انجام دهید.
b^{1-1}
مشتق یک چند جملهای، مجموع مشتقهای عبارتهای آن است. مشتق یک عبارت ثابت 0 است. مشتق ax^{n} برابر است با nax^{n-1}.
b^{0}
محاسبات را انجام دهید.
1
برای هر عبارت t به جز 0، t^{0}=1.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}