عامل
\left(a-7\right)\left(a+8\right)
ارزیابی
\left(a-7\right)\left(a+8\right)
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
p+q=1 pq=1\left(-56\right)=-56
با گروهبندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید بهصورت a^{2}+pa+qa-56 بازنویسی شود. برای یافتن p و q، دستگاهی را که باید حل شود تشکیل دهید.
-1,56 -2,28 -4,14 -7,8
از آنجا که pq منفی است، p و q علامت مخالف هم دارند. از آنجا که p+q مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفتهای صحیح را که حاصلشان -56 است فهرست کنید.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
مجموع هر زوج را محاسبه کنید.
p=-7 q=8
جواب زوجی است که مجموع آن 1 است.
\left(a^{2}-7a\right)+\left(8a-56\right)
a^{2}+a-56 را بهعنوان \left(a^{2}-7a\right)+\left(8a-56\right) بازنویسی کنید.
a\left(a-7\right)+8\left(a-7\right)
در گروه اول از a و در گروه دوم از 8 فاکتور بگیرید.
\left(a-7\right)\left(a+8\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک a-7 فاکتور بگیرید.
a^{2}+a-56=0
چند جملهای درجه دوم را میتوان با استفاده از تبدیل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور گرفت، به طوری که x_{1} و x_{2} راه حل معادله درجه دوم ax^{2}+bx+c=0 است.
a=\frac{-1±\sqrt{1^{2}-4\left(-56\right)}}{2}
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
a=\frac{-1±\sqrt{1-4\left(-56\right)}}{2}
1 را مجذور کنید.
a=\frac{-1±\sqrt{1+224}}{2}
-4 بار -56.
a=\frac{-1±\sqrt{225}}{2}
1 را به 224 اضافه کنید.
a=\frac{-1±15}{2}
ریشه دوم 225 را به دست آورید.
a=\frac{14}{2}
اکنون معادله a=\frac{-1±15}{2} را وقتی که ± مثبت است حل کنید. -1 را به 15 اضافه کنید.
a=7
14 را بر 2 تقسیم کنید.
a=-\frac{16}{2}
اکنون معادله a=\frac{-1±15}{2} وقتی که ± منفی است حل کنید. 15 را از -1 تفریق کنید.
a=-8
-16 را بر 2 تقسیم کنید.
a^{2}+a-56=\left(a-7\right)\left(a-\left(-8\right)\right)
عبارت اصلی را با استفاده از ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور بگیرید. 7 را برای x_{1} و -8 را برای x_{2} جایگزین کنید.
a^{2}+a-56=\left(a-7\right)\left(a+8\right)
همه عبارتهای فرم p-\left(-q\right) را به p+q ساده کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}