پرش به محتوای اصلی
عامل
Tick mark Image
ارزیابی
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

a+b=-5 ab=2\left(-3\right)=-6
با گروه‌بندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید به‌صورت 2x^{2}+ax+bx-3 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
1,-6 2,-3
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تمام جفت‌های صحیح را که حاصلشان -6 است فهرست کنید.
1-6=-5 2-3=-1
مجموع هر زوج را محاسبه کنید.
a=-6 b=1
جواب زوجی است که مجموع آن -5 است.
\left(2x^{2}-6x\right)+\left(x-3\right)
2x^{2}-5x-3 را به‌عنوان \left(2x^{2}-6x\right)+\left(x-3\right) بازنویسی کنید.
2x\left(x-3\right)+x-3
از 2x در 2x^{2}-6x فاکتور بگیرید.
\left(x-3\right)\left(2x+1\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-3 فاکتور بگیرید.
2x^{2}-5x-3=0
چند جمله‌ای درجه دوم را می‌توان با استفاده از تبدیل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور گرفت، به طوری که x_{1} و x_{2} راه حل معادله درجه دوم ax^{2}+bx+c=0 است.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
-5 را مجذور کنید.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
-4 بار 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
-8 بار -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
25 را به 24 اضافه کنید.
x=\frac{-\left(-5\right)±7}{2\times 2}
ریشه دوم 49 را به دست آورید.
x=\frac{5±7}{2\times 2}
متضاد -5 عبارت است از 5.
x=\frac{5±7}{4}
2 بار 2.
x=\frac{12}{4}
اکنون معادله x=\frac{5±7}{4} را وقتی که ± مثبت است حل کنید. 5 را به 7 اضافه کنید.
x=3
12 را بر 4 تقسیم کنید.
x=-\frac{2}{4}
اکنون معادله x=\frac{5±7}{4} وقتی که ± منفی است حل کنید. 7 را از 5 تفریق کنید.
x=-\frac{1}{2}
کسر \frac{-2}{4} را با ریشه گرفتن و ساده کردن 2، به کمترین عبارت‌ها کاهش دهید.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
عبارت اصلی را با استفاده از ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور بگیرید. 3 را برای x_{1} و -\frac{1}{2} را برای x_{2} جایگزین کنید.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
همه عبارت‌های فرم p-\left(-q\right) را به p+q ساده کنید.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
با یافتن یک مخرج مشترک و اضافه کردن صورت کسرها، \frac{1}{2} را به x اضافه کنید. سپس در صورت امکان، کسر را به کم‌ترین حالت ممکن ساده کنید.
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
بزرگترین عامل مشترک را از2 در 2 و 2 کم کنید.