ارزیابی
\frac{x^{3}-12x+11}{3}
مشتق گرفتن w.r.t. x
x^{2}-4
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\int t^{2}-4\mathrm{d}t
ابتدا انتگرال نامعین را محاسبه کنید.
\int t^{2}\mathrm{d}t+\int -4\mathrm{d}t
حاصل جمع را جمله به جمله انتگرال بگیرید.
\frac{t^{3}}{3}+\int -4\mathrm{d}t
چون \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} برای k\neq -1 است، \int t^{2}\mathrm{d}t را با \frac{t^{3}}{3}جایگزین کنید.
\frac{t^{3}}{3}-4t
با استفاده از جدول انتگرالهای مشترک قانون \int a\mathrm{d}t=at، انتگرال -4 را بگیرید.
\frac{x^{3}}{3}-4x-\left(\frac{1^{3}}{3}-4\right)
انتگرال معین برابر است با ضدمشتق عبارت محاسبهشده در حد بالای انتگرالگیری منهای ضدمشتق محاسبهشده در حد پایین انتگرالگیری.
\frac{x^{3}}{3}-4x+\frac{11}{3}
ساده کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}