برای x حل کنید (complex solution)
x=\frac{-5+\sqrt{115}i}{14}\approx -0.357142857+0.765986092i
x=\frac{-\sqrt{115}i-5}{14}\approx -0.357142857-0.765986092i
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
7x^{2}+5x+5=0
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
x=\frac{-5±\sqrt{5^{2}-4\times 7\times 5}}{2\times 7}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 7 را با a، 5 را با b و 5 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-5±\sqrt{25-4\times 7\times 5}}{2\times 7}
5 را مجذور کنید.
x=\frac{-5±\sqrt{25-28\times 5}}{2\times 7}
-4 بار 7.
x=\frac{-5±\sqrt{25-140}}{2\times 7}
-28 بار 5.
x=\frac{-5±\sqrt{-115}}{2\times 7}
25 را به -140 اضافه کنید.
x=\frac{-5±\sqrt{115}i}{2\times 7}
ریشه دوم -115 را به دست آورید.
x=\frac{-5±\sqrt{115}i}{14}
2 بار 7.
x=\frac{-5+\sqrt{115}i}{14}
اکنون معادله x=\frac{-5±\sqrt{115}i}{14} را وقتی که ± مثبت است حل کنید. -5 را به i\sqrt{115} اضافه کنید.
x=\frac{-\sqrt{115}i-5}{14}
اکنون معادله x=\frac{-5±\sqrt{115}i}{14} وقتی که ± منفی است حل کنید. i\sqrt{115} را از -5 تفریق کنید.
x=\frac{-5+\sqrt{115}i}{14} x=\frac{-\sqrt{115}i-5}{14}
این معادله اکنون حل شده است.
7x^{2}+5x+5=0
معادلات درجه دوم مانند این مورد را میتوان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
7x^{2}+5x+5-5=-5
5 را از هر دو طرف معادله تفریق کنید.
7x^{2}+5x=-5
تفریق 5 از خودش برابر با 0 میشود.
\frac{7x^{2}+5x}{7}=-\frac{5}{7}
هر دو طرف بر 7 تقسیم شوند.
x^{2}+\frac{5}{7}x=-\frac{5}{7}
تقسیم بر 7، ضرب در 7 را لغو میکند.
x^{2}+\frac{5}{7}x+\left(\frac{5}{14}\right)^{2}=-\frac{5}{7}+\left(\frac{5}{14}\right)^{2}
\frac{5}{7}، ضريب جمله x را بر 2 تقسیم کنید تا حاصل \frac{5}{14} شود. سپس مجذور \frac{5}{14} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{5}{7}+\frac{25}{196}
\frac{5}{14} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{115}{196}
با یافتن یک مخرج مشترک و اضافه کردن صورت کسرها، -\frac{5}{7} را به \frac{25}{196} اضافه کنید. سپس در صورت امکان، کسر را به کمترین حالت ممکن ساده کنید.
\left(x+\frac{5}{14}\right)^{2}=-\frac{115}{196}
عامل x^{2}+\frac{5}{7}x+\frac{25}{196}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+\frac{5}{14}\right)^{2}}=\sqrt{-\frac{115}{196}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+\frac{5}{14}=\frac{\sqrt{115}i}{14} x+\frac{5}{14}=-\frac{\sqrt{115}i}{14}
ساده کنید.
x=\frac{-5+\sqrt{115}i}{14} x=\frac{-\sqrt{115}i-5}{14}
\frac{5}{14} را از هر دو طرف معادله تفریق کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}