برای x حل کنید
x=1
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
4x-2-2x^{2}=0
2x^{2} را از هر دو طرف تفریق کنید.
2x-1-x^{2}=0
هر دو طرف بر 2 تقسیم شوند.
-x^{2}+2x-1=0
چندجملهای را برای قرار دادن در قالب استاندارد، دوباره مرتب کنید. جملات را از بیشترین به کمترین قرار دهید.
a+b=2 ab=-\left(-1\right)=1
برای حل معادله، با گروهبندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید بهصورت -x^{2}+ax+bx-1 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
a=1 b=1
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b مثبت است، a و b هر دو مثبت هستند. تنها جواب دستگاه این زوج است.
\left(-x^{2}+x\right)+\left(x-1\right)
-x^{2}+2x-1 را بهعنوان \left(-x^{2}+x\right)+\left(x-1\right) بازنویسی کنید.
-x\left(x-1\right)+x-1
از -x در -x^{2}+x فاکتور بگیرید.
\left(x-1\right)\left(-x+1\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک x-1 فاکتور بگیرید.
x=1 x=1
برای پیدا کردن جوابهای معادله، x-1=0 و -x+1=0 را حل کنید.
4x-2-2x^{2}=0
2x^{2} را از هر دو طرف تفریق کنید.
-2x^{2}+4x-2=0
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. -2 را با a، 4 را با b و -2 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
4 را مجذور کنید.
x=\frac{-4±\sqrt{16+8\left(-2\right)}}{2\left(-2\right)}
-4 بار -2.
x=\frac{-4±\sqrt{16-16}}{2\left(-2\right)}
8 بار -2.
x=\frac{-4±\sqrt{0}}{2\left(-2\right)}
16 را به -16 اضافه کنید.
x=-\frac{4}{2\left(-2\right)}
ریشه دوم 0 را به دست آورید.
x=-\frac{4}{-4}
2 بار -2.
x=1
-4 را بر -4 تقسیم کنید.
4x-2-2x^{2}=0
2x^{2} را از هر دو طرف تفریق کنید.
4x-2x^{2}=2
2 را به هر دو طرف اضافه کنید. هر چیزی به علاوه صفر، میشود خودش.
-2x^{2}+4x=2
معادلات درجه دوم مانند این مورد را میتوان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
\frac{-2x^{2}+4x}{-2}=\frac{2}{-2}
هر دو طرف بر -2 تقسیم شوند.
x^{2}+\frac{4}{-2}x=\frac{2}{-2}
تقسیم بر -2، ضرب در -2 را لغو میکند.
x^{2}-2x=\frac{2}{-2}
4 را بر -2 تقسیم کنید.
x^{2}-2x=-1
2 را بر -2 تقسیم کنید.
x^{2}-2x+1=-1+1
-2، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -1 شود. سپس مجذور -1 را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}-2x+1=0
-1 را به 1 اضافه کنید.
\left(x-1\right)^{2}=0
عامل x^{2}-2x+1. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-1=0 x-1=0
ساده کنید.
x=1 x=1
1 را به هر دو طرف معامله اضافه کنید.
x=1
این معادله اکنون حل شده است. راهکارها مشابه هستند.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}