برای x حل کنید
x = \frac{\sqrt{141}}{2} \approx 5.937171044
x = -\frac{\sqrt{141}}{2} \approx -5.937171044
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
4x^{2}=60+81
81 را به هر دو طرف اضافه کنید.
4x^{2}=141
60 و 81 را برای دریافت 141 اضافه کنید.
x^{2}=\frac{141}{4}
هر دو طرف بر 4 تقسیم شوند.
x=\frac{\sqrt{141}}{2} x=-\frac{\sqrt{141}}{2}
ریشه دوم هر دو طرف معادله را به دست آورید.
4x^{2}-81-60=0
60 را از هر دو طرف تفریق کنید.
4x^{2}-141=0
تفریق 60 را از -81 برای به دست آوردن -141 تفریق کنید.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-141\right)}}{2\times 4}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 4 را با a، 0 را با b و -141 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{0±\sqrt{-4\times 4\left(-141\right)}}{2\times 4}
0 را مجذور کنید.
x=\frac{0±\sqrt{-16\left(-141\right)}}{2\times 4}
-4 بار 4.
x=\frac{0±\sqrt{2256}}{2\times 4}
-16 بار -141.
x=\frac{0±4\sqrt{141}}{2\times 4}
ریشه دوم 2256 را به دست آورید.
x=\frac{0±4\sqrt{141}}{8}
2 بار 4.
x=\frac{\sqrt{141}}{2}
اکنون معادله x=\frac{0±4\sqrt{141}}{8} را وقتی که ± مثبت است حل کنید.
x=-\frac{\sqrt{141}}{2}
اکنون معادله x=\frac{0±4\sqrt{141}}{8} وقتی که ± منفی است حل کنید.
x=\frac{\sqrt{141}}{2} x=-\frac{\sqrt{141}}{2}
این معادله اکنون حل شده است.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}