برای x حل کنید
x=\frac{\sqrt{33}-1}{8}\approx 0.593070331
x=\frac{-\sqrt{33}-1}{8}\approx -0.843070331
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
4x^{2}+x-2=0
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
x=\frac{-1±\sqrt{1^{2}-4\times 4\left(-2\right)}}{2\times 4}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 4 را با a، 1 را با b و -2 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-1±\sqrt{1-4\times 4\left(-2\right)}}{2\times 4}
1 را مجذور کنید.
x=\frac{-1±\sqrt{1-16\left(-2\right)}}{2\times 4}
-4 بار 4.
x=\frac{-1±\sqrt{1+32}}{2\times 4}
-16 بار -2.
x=\frac{-1±\sqrt{33}}{2\times 4}
1 را به 32 اضافه کنید.
x=\frac{-1±\sqrt{33}}{8}
2 بار 4.
x=\frac{\sqrt{33}-1}{8}
اکنون معادله x=\frac{-1±\sqrt{33}}{8} را وقتی که ± مثبت است حل کنید. -1 را به \sqrt{33} اضافه کنید.
x=\frac{-\sqrt{33}-1}{8}
اکنون معادله x=\frac{-1±\sqrt{33}}{8} وقتی که ± منفی است حل کنید. \sqrt{33} را از -1 تفریق کنید.
x=\frac{\sqrt{33}-1}{8} x=\frac{-\sqrt{33}-1}{8}
این معادله اکنون حل شده است.
4x^{2}+x-2=0
معادلات درجه دوم مانند این مورد را میتوان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
4x^{2}+x-2-\left(-2\right)=-\left(-2\right)
2 را به هر دو طرف معامله اضافه کنید.
4x^{2}+x=-\left(-2\right)
تفریق -2 از خودش برابر با 0 میشود.
4x^{2}+x=2
-2 را از 0 تفریق کنید.
\frac{4x^{2}+x}{4}=\frac{2}{4}
هر دو طرف بر 4 تقسیم شوند.
x^{2}+\frac{1}{4}x=\frac{2}{4}
تقسیم بر 4، ضرب در 4 را لغو میکند.
x^{2}+\frac{1}{4}x=\frac{1}{2}
کسر \frac{2}{4} را با ریشه گرفتن و ساده کردن 2، به کمترین عبارتها کاهش دهید.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{1}{2}+\left(\frac{1}{8}\right)^{2}
\frac{1}{4}، ضريب جمله x را بر 2 تقسیم کنید تا حاصل \frac{1}{8} شود. سپس مجذور \frac{1}{8} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1}{2}+\frac{1}{64}
\frac{1}{8} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{33}{64}
با یافتن یک مخرج مشترک و اضافه کردن صورت کسرها، \frac{1}{2} را به \frac{1}{64} اضافه کنید. سپس در صورت امکان، کسر را به کمترین حالت ممکن ساده کنید.
\left(x+\frac{1}{8}\right)^{2}=\frac{33}{64}
عامل x^{2}+\frac{1}{4}x+\frac{1}{64}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{33}{64}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+\frac{1}{8}=\frac{\sqrt{33}}{8} x+\frac{1}{8}=-\frac{\sqrt{33}}{8}
ساده کنید.
x=\frac{\sqrt{33}-1}{8} x=\frac{-\sqrt{33}-1}{8}
\frac{1}{8} را از هر دو طرف معادله تفریق کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}